2
|
Sethi S, Augustine RA, Bouwer GT, Perkinson MR, Cheong I, Bussey CT, Schwenke DO, Brown CH, Lamberts RR. Increased neuronal activation in sympathoregulatory regions of the brain and spinal cord in type 2 diabetic rats. J Neuroendocrinol 2021; 33:e13016. [PMID: 34338379 DOI: 10.1111/jne.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
Increased cardiac sympathetic nerve activity in type 2 diabetes mellitus (DM) suggests impaired autonomic control of the heart. However, the central regions that contribute to the autonomic cardiac pathologies in type 2 DM are unknown. Therefore, we tested the hypothesis that neuronal activation would be increased in central sympathoregulatory areas in a pre-clinical type 2 DM animal model. Immunohistochemistry in 20-week-old male Zucker diabetic fatty (ZDF) rats revealed an increased number of neurones expressing ΔFosB (a marker of chronic neuronal activation) in the intermediolateral column (IML) of the spinal cord in DM compared to non-diabetic (non-DM) rats (P < 0.05). Rostral ventrolateral medulla (RVLM) neurones activate IML neurones and receive inputs from the hypothalamic paraventricular nucleus (PVN), as well as the nucleus tractus solitarius (NTS) and area postrema (AP), in the brainstem. We observed more ΔFosB-positive noradrenergic RVLM neurones (P < 0.001) and corticotrophin-releasing hormone PVN neurones (P < 0.05) in DM compared to non-DM rats. More ΔFosB-positive neurones were also observed in the NTS (P < 0.05) and AP (P < 0.01) of DM rats compared to non-DM rats. Finally, because DM ZDF rats are obese, we also expected increased activation of pro-opiomelanocortin (POMC) arcuate nucleus (ARC) neurones in DM rats; however, fewer ΔFosB-positive POMC ARC neurones were observed in DM compared to non-DM rats (P < 0.01). In conclusion, increased neuronal activation in the IML of type 2 DM ZDF rats might be driven by RVLM neurones that are possibly activated by PVN, NTS and AP inputs. Elucidating the contribution of central sympathoexcitatory drive in type 2 DM might improve the effectiveness of pharmacotherapies for diabetic heart disease.
Collapse
Affiliation(s)
- Shivani Sethi
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael R Perkinson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isaiah Cheong
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Carol T Bussey
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Auckland, Grafton, Auckland, New Zealand
| | - Daryl O Schwenke
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Bussey CT, Babakr AA, Iremonger RR, van Hout I, Wilkins GT, Lamberts RR, Erickson JR. Carvedilol and metoprolol are both able to preserve myocardial function in type 2 diabetes. Physiol Rep 2020; 8:e14394. [PMID: 32170823 PMCID: PMC7070160 DOI: 10.14814/phy2.14394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Increasing cohorts of patients present with diabetic cardiomyopathy, and with no targeted options, treatment often rely on generic pharmaceuticals such as β-blockers. β-blocker efficacy is heterogenous, with second generation β-blocker metoprolol selectively inhibiting β1 -AR, while third generation β-blocker carvedilol has α1 -AR inhibition, antioxidant, and anti-apoptotic actions alongside nonselective β-AR inhibition. These additional properties have led to the hypothesis that carvedilol may improve cardiac contractility in the diabetic heart to a greater extent than metoprolol. The present study aimed to compare the efficacy of metoprolol and carvedilol on myocardial function in animal models and cardiac tissue from patients with type 2 diabetes and preserved ejection fraction. METHODS Echocardiographic examination of cardiac function and assessment of myocardial function in isolated trabeculae was carried out in patients with and without diabetes undergoing coronary artery bypass grafting (CABG) who were prescribed metoprolol or carvedilol. Equivalent measures were undertaken in Zucker Diabetic Fatty (ZDF) rats following 4 weeks treatment with metoprolol or carvedilol. RESULTS Patients receiving carvedilol compared to metoprolol had no difference in cardiac function, and no difference was apparent in myocardial function between β-blockers. Both β-blockers similarly improved myocardial function in diabetic ZDF rats treated for 4 weeks, without significantly affecting in vivo cardiac function. CONCLUSIONS Metoprolol and carvedilol were found to have no effect on cardiac function in type 2 diabetes with preserved ejection fraction, and were similarly effective in preventing myocardial dysfunction in ZDF rats.
Collapse
Affiliation(s)
- Carol T Bussey
- Department of Physiology-HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Aram A Babakr
- Department of Physiology-HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachael R Iremonger
- Department of Physiology-HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology-HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gerard T Wilkins
- Department of Medicine-HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology-HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology-HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Bussey CT, Lamberts RR. Effect of type 2 diabetes, surgical incision, and volatile anesthesia on hemodynamics in the rat. Physiol Rep 2018; 5:5/14/e13352. [PMID: 28716819 PMCID: PMC5532486 DOI: 10.14814/phy2.13352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/17/2017] [Indexed: 01/05/2023] Open
Abstract
Diabetic patients have increased cardiac complications during surgery, possibly due to impaired autonomic regulation. Anesthesia lowers blood pressure and heart rate (HR), whereas surgical intervention has opposing effects. The interaction of anesthesia and surgical intervention on hemodynamics in diabetes is unknown, despite being a potential perioperative risk factor. We aimed to determine the effect of diabetes on the integrative interaction between hemodynamics, anesthesia, and surgical incision. Zucker type 2 diabetic rats (DM) and their nondiabetic littermates (ND) were implanted with an intravenous port for drug delivery, and a radiotelemeter to measure mean arterial blood pressure (MAP) and derive HR (total n = 50). Hemodynamic pharmacological responses were assessed under conscious, isoflurane anesthesia (~2-2.5%), and anesthesia-surgical conditions; the latter performed as a laparotomy. MAP was not different between groups under conscious conditions (ND 120 ± 6 vs. DM 131 ± 4 mmHg, P > 0.05). Anesthesia reduced MAP, but not differently in DM (ND -30 ± 6 vs. DM -38 ± 4 ΔmmHg, P > 0.05). Despite adequate anesthesia, surgical incision increased MAP, which tended to be less in DM (ND +21 ± 4 vs. DM +13 ± 2 ΔmmHg, P = 0.052). Anesthesia disrupted central baroreflex HR responses to sympathetic activation (sodium nitroprusside 10 μg·kg-1, ND conscious 83 ± 13 vs. anesthetized 16 ± 5 Δbpm; P < 0.05) or to sympathetic withdrawal (phenylephrine 10 μg·kg-1, ND conscious -168 ± 37 vs. anesthetized -20 ± 6 Δbpm; P < 0.05) with no additional changes observed after surgical incision or during diabetes. During perioperative conditions, type 2 diabetes did not impact on short-term hemodynamic regulation. Anesthesia had the largest hemodynamic impact, whereas surgical effects were limited to modulation of baseline blood pressure.
Collapse
Affiliation(s)
- Carol T Bussey
- Department of Physiology - HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology - HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|