1
|
Szabo PL, Marksteiner J, Ebner J, Dostal C, Podesser BK, Sauer J, Kubista H, Todt H, Hackl B, Koenig X, Kiss A, Hilber K. Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Physiol Rep 2023; 11:e15664. [PMID: 37032434 PMCID: PMC10083165 DOI: 10.14814/phy2.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Marksteiner J, Ebner J, Salzer I, Lilliu E, Hackl B, Todt H, Kubista H, Hallström S, Koenig X, Hilber K. Evidence for a Physiological Role of T-Type Ca Channels in Ventricular Cardiomyocytes of Adult Mice. MEMBRANES 2022; 12:566. [PMID: 35736273 PMCID: PMC9230067 DOI: 10.3390/membranes12060566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
T-type Ca channels are strongly expressed and important in the developing heart. In the adult heart, these channels play a significant role in pacemaker tissues, but there is uncertainty about their presence and physiological relevance in the working myocardium. Here, we show that the T-type Ca channel isoforms Cav3.1 and Cav3.2 are expressed at a protein level in ventricular cardiomyocytes from healthy adult C57/BL6 mice. Myocytes isolated from adult wild-type and Cav3.2 KO mice showed considerable whole cell T-type Ca currents under beta-adrenergic stimulation with isoprenaline. We further show that the detectability of basal T-type Ca currents in murine wild-type cardiomyocytes depends on the applied experimental conditions. Together, these findings reveal the presence of functional T-type Ca channels in the membrane of ventricular myocytes. In addition, electrically evoked Ca release from the sarcoplasmic reticulum was significantly impaired in Cav3.2 KO compared to wild-type cardiomyocytes. Our work implies a physiological role of T-type Ca channels in the healthy adult murine ventricular working myocardium.
Collapse
Affiliation(s)
- Jessica Marksteiner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Janine Ebner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Isabella Salzer
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Elena Lilliu
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Benjamin Hackl
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| |
Collapse
|
3
|
Zhao Z, Zheng B, Li J, Wei Z, Chu S, Han X, Chu L, Wang H, Chu X. Influence of Crocetin, a Natural Carotenoid Dicarboxylic Acid in Saffron, on L-Type Ca 2+ Current, Intracellular Ca 2+ Handling and Contraction of Isolated Rat Cardiomyocytes. Biol Pharm Bull 2021; 43:1367-1374. [PMID: 32879211 DOI: 10.1248/bpb.b20-00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crocetin is a major bioactive ingredient in saffron (Crocus sativus L.) and has favorable cardiovascular effects. Here, the effects of crocetin on L-type Ca2+ current (ICa-L), contractility, and the Ca2+ transients of rat cardiomyocytes, were investigated via patch-clamp technique and the Ion Optix system. A 600 µg/mL dose of crocetin decreased ICa-L 31.50 ± 2.53% in normal myocytes and 35.56 ± 2.42% in ischemic myocytes, respectively. The current voltage nexus of the calcium current, the reversal of the calcium current, and the activation/deactivation of the calcium current was not changed. At 600 µg/mL, crocetin abated cell shortening by 28.6 ± 2.31%, with a decrease in the time to 50% of the peak and a decrease in the time to 50% of the baseline. At 600 µg/mL, crocetin abated the crest value of the ephemeral Ca2+ by 31.87 ± 2.57%. The time to half maximal of Ca2+ peak and the time constant of decay of Ca2+ transient were both reduced. Our results suggest that crocetin inhibits L-type Ca2+ channels, causing decreased intracellular Ca2+ concentration and contractility in adult rat ventricular myocytes. These findings reveal crocetin's potential use as a calcium channel antagonist for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zhifeng Zhao
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Ziheng Wei
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Sijie Chu
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University
| |
Collapse
|
4
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
5
|
Szabó PL, Ebner J, Koenig X, Hamza O, Watzinger S, Trojanek S, Abraham D, Todt H, Kubista H, Schicker K, Remy S, Anegon I, Kiss A, Podesser BK, Hilber K. Cardiovascular phenotype of the Dmdmdx rat - a suitable animal model for Duchenne muscular dystrophy. Dis Model Mech 2021; 14:14/2/dmm047704. [PMID: 33619211 PMCID: PMC7927653 DOI: 10.1242/dmm.047704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Besides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD. Here, we characterized in detail the cardiovascular abnormalities of Dmdmdx rats, with the aim of determining the suitability of this recently established dystrophin-deficient small animal as a model for DMD. Various methods were applied to compare cardiovascular properties between wild-type and Dmdmdx rats, and to characterize the Dmdmdx cardiomyopathy. These methods comprised echocardiography, invasive assessment of left ventricular hemodynamics, examination of adverse remodeling and endothelial cell inflammation, and evaluation of vascular function, employing wire myography. Finally, intracellular Ca2+ transient measurements, and recordings of currents through L-type Ca2+ channels were performed in isolated single ventricular cardiomyocytes. We found that, similar to respective observations in DMD patients, the hearts of Dmdmdx rats show significantly impaired cardiac function, fibrosis and inflammation, consistent with the development of a dilated cardiomyopathy. Moreover, in Dmdmdx rats, vascular endothelial function is impaired, which may relate to inflammation and oxidative stress, and Ca2+ handling in Dmdmdx cardiomyocytes is abnormal. These findings indicate that Dmdmdx rats represent a promising small-animal model to elucidate mechanisms of cardiomyopathy development in the dystrophic heart, and to test mechanism-based therapies aiming to combat cardiovascular complications in DMD. Summary: We characterized the cardiovascular abnormalities of Dmdmdx rats, demonstrating that Dmdmdx rats show similar cardiac and vascular endothelial function impairments to Duchenne muscular dystrophy patients, representing a model of the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Janine Ebner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Ouafa Hamza
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Simon Watzinger
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Sandra Trojanek
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Klaus Schicker
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Séverine Remy
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes Université, F-44000 Nantes, France
| | - Ignacio Anegon
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes Université, F-44000 Nantes, France
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
6
|
Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A. Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy. Int J Mol Sci 2020; 22:ijms22010356. [PMID: 33396334 PMCID: PMC7796305 DOI: 10.3390/ijms22010356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Additionally, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.
Collapse
Affiliation(s)
- Moises Rodriguez-Gonzalez
- Pediatric Cardiology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Correspondence: ; Tel.: +34-956002700
| | - Manuel Lubian-Gutierrez
- Pediatric Neurology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Division of Doctor Cayetano Roldan Primary Care Center, 11100 San Fernando, Spain
| | | | | | - Ana Castellano-Martinez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Nephrology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| |
Collapse
|
7
|
Varga B, Meli AC, Radoslavova S, Panel M, Lacampagne A, Gergely C, Cazorla O, Cloitre T. Internal structure and remodeling in dystrophin-deficient cardiomyocytes using second harmonic generation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102295. [PMID: 32889047 DOI: 10.1016/j.nano.2020.102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining. Images were acquired on alive DMD (mdx) and wild type cardiomyocytes at different ages and at various external calcium concentrations. An automated image processing was developed to identify individual myofibrils and extract data about their organization. We observed a structural aging-dependent remodeling in mdx cardiomyocytes affecting sarcomere sinuosity, orientation and length that could not be anticipated from standard optical imaging. These results revealed for the first time the interest of SHG to evaluate the intracellular and sarcomeric remodeling of DMD cardiac tissue in an age-dependent manner that could participate in progressive contractile dysfunction.
Collapse
Affiliation(s)
- Béla Varga
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Silviya Radoslavova
- L2C, University of Montpellier, CNRS, Montpellier, France; PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Mathieu Panel
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Csilla Gergely
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
8
|
Zhang X, Li Y, Zhang X, Piacentino V, Harris DM, Berretta R, Margulies KB, Houser SR, Chen X. A low voltage activated Ca 2+ current found in a subset of human ventricular myocytes. Channels (Austin) 2020; 14:231-245. [PMID: 32684070 PMCID: PMC7515576 DOI: 10.1080/19336950.2020.1794420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Low voltage activated (ICa-LVA) calcium currents including Cav1.3 and T-type calcium current (ICa-T) have not been reported in adult human left ventricular myocytes (HLVMs). We tried to examine their existence and possible correlation with etiology and patient characteristics in a big number of human LVMs isolated from explanted terminally failing (F) hearts, failing hearts with left ventricular assist device (F-LVAD) and nonfailing (NF) human hearts. LVA (ICa-LVA) was determined by subtracting L-type Ca2+ current (ICa-L) recorded with the holding potential of −50 mV from total Ca2+ current recorded with the holding potential of −90 mV or −70 mV. ICa- LVA was further tested with its sensitivity to 100 µM CdCl2 and tetrodotoxin. Three HLVMs (3 of 137 FHLVMs) from 2 (N = 30 hearts) failing human hearts, of which one was idiopathic and the other was due to primary pulmonary hypertension, were found with ICa-LVA. ICa-LVA in one FHLVM was not sensitive to 100 µM CdCl2 while ICa-LVA in another two FHLVMs was not sensitive to tetrodotoxin. It peaked at the voltage of −40~-20 mV and had a time-dependent decay faster than ICa-L but slower than sodium current (INa). ICa-LVA was not found in any HLVMs from NF (75 HLVMs from 17 hearts) or F-LVAD hearts (82 HLVMs from 18 hearts) but a statistically significant correlation could not be established. In conclusion, ICa-LVA was detected in some HLVMs of a small portion of human hearts that happened to be nonischemic failing hearts.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infection Diseases The First Affiliated Hospital of China Medical University , Shenyang China.,Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Yijia Li
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Valentino Piacentino
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department Grand Strand Surgical Care, Grand Strand Regional Medical Center , Myrtle Beach, SC
| | - David M Harris
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Remus Berretta
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| |
Collapse
|
9
|
Ebner J, Cagalinec M, Kubista H, Todt H, Szabo PL, Kiss A, Podesser BK, Cserne Szappanos H, Hool LC, Hilber K, Koenig X. Neuronal nitric oxide synthase regulation of calcium cycling in ventricular cardiomyocytes is independent of Ca v1.2 channel modulation under basal conditions. Pflugers Arch 2020; 472:61-74. [PMID: 31822999 PMCID: PMC6960210 DOI: 10.1007/s00424-019-02335-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.
Collapse
Affiliation(s)
- Janine Ebner
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helmut Kubista
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Petra L Szabo
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Livia C Hool
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Karlheinz Hilber
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| | - Xaver Koenig
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| |
Collapse
|
10
|
Dystrophin and calcium current are decreased in cardiomyocytes expressing Cre enzyme driven by αMHC but not TNT promoter. Sci Rep 2019; 9:19422. [PMID: 31857666 PMCID: PMC6923407 DOI: 10.1038/s41598-019-55950-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
The Cre/lox system is a potent technology to control gene expression in mouse tissues. However, cardiac-specific Cre recombinase expression alone can lead to cardiac alterations when no loxP sites are present, which is not well understood. Many loxP-like sites have been identified in the mouse genome that might be Cre sensitive. One of them is located in the Dmd gene encoding dystrophin, a protein important for the function and stabilization of voltage-gated calcium (Cav1.2) and sodium (Nav1.5) channels, respectively. Here, we investigate whether Cre affects dystrophin expression and function in hearts without loxP sites in the genome. In mice expressing Cre under the alpha-myosin heavy chain (MHC-Cre) or Troponin T (TNT-Cre) promoter, we investigated dystrophin expression, Nav1.5 expression, and Cav1.2 function. Compared to age-matched MHC-Cre- mice, dystrophin protein level was significantly decreased in hearts from MHC-Cre+ mice of more than 12-weeks-old. Quantitative RT-PCR revealed decreased mRNA levels of Dmd gene. Unexpectedly, calcium current (ICaL), but not Nav1.5 protein expression was altered in those mice. Surprisingly, in hearts from 12-week-old and older TNT-Cre+ mice, neither ICaL nor dystrophin and Nav1.5 protein content were altered compared to TNT-Cre-. Cre recombinase unpredictably affects cardiac phenotype, and Cre-expressing mouse models should be carefully investigated before experimental use.
Collapse
|
11
|
Esposito G, Carsana A. Metabolic Alterations in Cardiomyocytes of Patients with Duchenne and Becker Muscular Dystrophies. J Clin Med 2019; 8:jcm8122151. [PMID: 31817415 PMCID: PMC6947625 DOI: 10.3390/jcm8122151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) result in progressive weakness of skeletal and cardiac muscles due to the deficiency of functional dystrophin. Respiratory failure is a leading cause of mortality in DMD patients; however, improved management of the respiratory symptoms have increased patients' life expectancy, thereby also increasing the clinical relevance of heart disease. In fact, the prevalence of cardiomyopathy, which significantly contributes to mortality in DMD patients, increases with age and disease progression, so that over 95% of adult patients has cardiomyopathy signs. We here review the current literature featuring the metabolic alterations observed in the dystrophic heart of the mdx mouse, i.e., the best-studied animal model of the disease, and discuss their pathophysiological role in the DMD heart. It is well assessed that dystrophin deficiency is associated with pathological alterations of lipid metabolism, intracellular calcium levels, neuronal nitric oxide (NO) synthase localization, and NO and reactive oxygen species production. These metabolic stressors contribute to impair the function of the cardiac mitochondrial bulk, which has a relevant pathophysiological role in the development of cardiomyopathy. In fact, mitochondrial dysfunction becomes more severe as the dystrophic process progresses, thereby indicating it may be both the cause and the consequence of the dystrophic process in the DMD heart.
Collapse
Affiliation(s)
- Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Antonella Carsana
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
12
|
Voltage-Dependent Sarcolemmal Ion Channel Abnormalities in the Dystrophin-Deficient Heart. Int J Mol Sci 2018; 19:ijms19113296. [PMID: 30360568 PMCID: PMC6274787 DOI: 10.3390/ijms19113296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in the gene encoding for the intracellular protein dystrophin cause severe forms of muscular dystrophy. These so-called dystrophinopathies are characterized by skeletal muscle weakness and degeneration. Dystrophin deficiency also gives rise to considerable complications in the heart, including cardiomyopathy development and arrhythmias. The current understanding of the pathomechanisms in the dystrophic heart is limited, but there is growing evidence that dysfunctional voltage-dependent ion channels in dystrophin-deficient cardiomyocytes play a significant role. Herein, we summarize the current knowledge about abnormalities in voltage-dependent sarcolemmal ion channel properties in the dystrophic heart, and discuss the potentially underlying mechanisms, as well as their pathophysiological relevance.
Collapse
|
13
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Rubi L, Todt H, Kubista H, Koenig X, Hilber K. Calcium current properties in dystrophin-deficient ventricular cardiomyocytes from aged mdx mice. Physiol Rep 2018; 6:e13567. [PMID: 29333726 PMCID: PMC5789658 DOI: 10.14814/phy2.13567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the gene encoding for the cytoskeletal protein dystrophin, is linked with severe cardiac complications including cardiomyopathy development and cardiac arrhythmias. We and others recently reported that currents through L-type calcium (Ca) channels were significantly increased, and channel inactivation was reduced in dystrophin-deficient ventricular cardiomyocytes derived from the mdx mouse, the most commonly used animal model for human DMD. These gain-of-function Ca channel abnormalities may enhance the risk of Ca-dependent arrhythmias and cellular Ca overload in the dystrophic heart. All studies, which have so far investigated L-type Ca channel properties in dystrophic cardiomyocytes, have used hearts from either neonatal or young adult mdx mice as cell source. In consequence, the dimension of the Ca channel abnormalities present in the severely-diseased aged dystrophic heart has remained unknown. Here, we have studied potential abnormalities in Ca currents and intracellular Ca transients in ventricular cardiomyocytes derived from aged dystrophic mdx mice. We found that both the L-type and T-type Ca current properties of mdx cardiomyocytes were similar to those of myocytes derived from aged wild-type mice. Accordingly, Ca release from the sarcoplasmic reticulum was normal in cardiomyocytes from aged mdx mice. This suggests that, irrespective of the presence of a pronounced cardiomyopathy in aged mdx mice, Ca currents and Ca release in dystrophic cardiomyocytes are normal. Finally, our data imply that dystrophin- regulation of L-type Ca channel function in the heart is lost during aging.
Collapse
MESH Headings
- Action Potentials
- Aging/metabolism
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/metabolism
- Calcium Signaling
- Cells, Cultured
- Heart Ventricles/cytology
- Heart Ventricles/growth & development
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
Collapse
Affiliation(s)
- Lena Rubi
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Hannes Todt
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Helmut Kubista
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Xaver Koenig
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Karlheinz Hilber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|