1
|
Rizk FH, Barhoma RAE, El-Saka MH, Ibrahim HA, El-Gohary RM, Ismail R, Motawea SM, Salem O, Hegab II. Exercise training and spexin ameliorate thyroid changes in obese type 2 diabetic rats: the possible interlaying mechanisms. Am J Physiol Endocrinol Metab 2024; 327:E313-E327. [PMID: 39017682 DOI: 10.1152/ajpendo.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Thyroid dysfunction and diabetes mellitus are prevalent endocrine disorders that often coexist and influence each other. The role of spexin (SPX) in diabetes and obesity is well documented, but its connection to thyroid function is less understood. This study investigates the influence of exercise (EX) and SPX on thyroid hypofunction in obese type 2 diabetic rats. Rats were divided into normal control, obese diabetic sedentary, obese diabetic EX, and obese diabetic SPX groups, with subdivisions for M871 and HT-2157 treatment in the latter two groups. High-fat diet together with streptozotocin (STZ) injection induced obesity and diabetes. The EX group underwent swimming, and the SPX group received SPX injections for 8 wk. Results showed significant improvements in thyroid function and metabolic, oxidative, and inflammatory states with EX and SPX treatment. The study also explored the involvement of galanin receptor isoforms (GALR)2/3 in SPX effects on thyroid function. Blocking GALR2/3 receptors partially attenuated the beneficial effects, indicating their interaction. These findings underscore the importance of EX and SPX in modulating thyroid function in obesity and diabetes. Comprehending this interplay could enable the development of new treatment approaches for thyroid disorders associated with obese type 2 diabetes. Additional research is necessary to clarify the exact mechanisms connecting SPX, EX activity, and thyroid function.NEW & NOTEWORTHY This study proves, for the first time, the beneficial effects of SPX on thyroid dysfunction in obese diabetic rats and suggests that SPX mediates the EX effect on thyroid gland and exerts its effect mainly via GALR2.
Collapse
Affiliation(s)
- Fatma H Rizk
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ramez A E Barhoma
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
| | - Mervat H El-Saka
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Ismail
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaimaa M Motawea
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ola Salem
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Islam Ibrahim Hegab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Tung YT, Chen YL, Fan TY, Fong TH, Chiu WC. Effects of dietary adjustment of n-3: n-6 fatty-acid ratio to 1:2 on anti-inflammatory and insulin-signaling pathways in ovariectomized mice with high fat diet-induced obesity. Heliyon 2023; 9:e20451. [PMID: 37817999 PMCID: PMC10560786 DOI: 10.1016/j.heliyon.2023.e20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Estrogen deficiency increases the secretion of inflammatory mediators and can lead to obesity. Consequently, estrogen deficiency can cause metabolic syndrome, particularly insulin resistance during menopause. Both fish oil and perilla oil contain n-3 fatty acids, which may regulate several inflammatory cytokines. Additionally, adjusting the dietary n-3:n-6 fatty-acid ratio to 1:2 may help treat or prevent chronic diseases. Therefore, we investigated the effect of anti-inflammatory and insulin-signaling pathways, not solely in relation to the (n-3:n-6 fatty-acid ratio at 1:2), but also considering the origin of n-3 fatty acids found in fish oil and perilla oil, in a mouse model of estrogen deficiency induced by ovariectomy and obesity induced by a high-fat diet (HFD). Female C57BL/6J mice were divided into five groups: sham mice on a normal diet; ovariectomized (OVX) mice on a normal diet (OC); OVX mice on a HFD plus lard oil (OL), fish oil (OF), or perilla oil (OP). The dietary n-3:n-6 ratio in the OF and OP groups was adjusted to 1:2. The results showed OF group exhibited significantly lower abdominal adipose tissue weight, fewer liver lipid droplets, and smaller uterine adipocytes, compared with the OL group. Compared with the OL group, the OF and OP groups exhibited higher oral glucose tolerance and lower serum alanine aminotransferase activity, triacylglycerol levels, and total cholesterol levels. Hepatic JAK2, STAT3, and SOCS3 mRNA expression and p-NF-κB p65 and IL-6 levels were significantly lower in the OF and OP groups than in the OL group. Only the OF group exhibited an increase in PI3K and Akt mRNA expression, decrease in GLUT2 mRNA expression, and considerable elevation of p-Akt. Both fish and perilla oil reduced inflammatory signaling markers. However, only fish oil improved insulin signaling (PI3K, Akt, and GLUT2). Our data suggest that fish oil can alleviate insulin signaling through activating the PI3K-Akt-GLUT2 cascade signaling pathway.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Cell Therapy Center, Chang Gung Memorial Hospital, New Taipei City 333, Taiwan
| | - Tzu-Yu Fan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Cell Therapy Center, Chang Gung Memorial Hospital, New Taipei City 333, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
3
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Færgeman N, Rauch A, Tencerova M, Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell 2022; 21:e13726. [PMID: 36217558 PMCID: PMC9741509 DOI: 10.1111/acel.13726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022] Open
Abstract
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Atenisa Caci
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Clarissa Schmal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Greet Kerckhofs
- Biomechanics Section, Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Nils Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Molecular Physiology of Bone, Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Department of Cellular and Molecular Medicine, Danish Stem Cell Centre (DanStem)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Pyo S, Kim J, Hwang J, Heo JH, Kim K, Cho SR. Environmental Enrichment and Estrogen Upregulate Beta-Hydroxybutyrate Underlying Functional Improvement. Front Mol Neurosci 2022; 15:869799. [PMID: 35592114 PMCID: PMC9113201 DOI: 10.3389/fnmol.2022.869799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Environmental enrichment (EE) is a promising therapeutic strategy in improving metabolic and neuronal responses, especially due to its non-invasive nature. However, the exact mechanism underlying the sex-differential effects remains unclear. The aim of the current study was to investigate the effects of EE on metabolism, body composition, and behavioral phenotype based on sex. Long-term exposure to EE for 8 weeks induced metabolic changes and fat reduction. In response to the change in metabolism, the level of βHB were influenced by sex and EE possibly in accordance to the phases of estrogen cycle. The expression of β-hydroxybutyrate (βHB)-related genes and proteins such as monocarboxylate transporters, histone deacetylases (HDAC), and brain-derived neurotrophic factor (BDNF) were significantly regulated. In cerebral cortex and hippocampus, EE resulted in a significant increase in the level of βHB and a significant reduction in HDAC, consequently enhancing BDNF expression. Moreover, EE exerted significant effects on motor and cognitive behaviors, indicating a significant functional improvement in female mice under the condition that asserts the influence of estrogen cycle. Using an ovariectomized mice model, the effects of EE and estrogen treatment proved the hypothesis that EE upregulates β-hydroxybutyrate and BDNF underlying functional improvement in female mice. The above findings demonstrate that long-term exposure to EE can possibly alter metabolism by increasing the level of βHB, regulate the expression of βHB-related proteins, and improve behavioral function as reflected by motor and cognitive presentation following the changes in estrogen level. This finding may lead to a marked improvement in metabolism and neuroplasticity by EE and estrogen level.
Collapse
Affiliation(s)
- Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Joohee Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Hwang
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Hyun Heo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungri Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Molina-Molina E, Furtado GE, Jones JG, Portincasa P, Vieira-Pedrosa A, Teixeira AM, Barros MP, Bachi ALL, Sardão VA. The advantages of physical exercise as a preventive strategy against NAFLD in postmenopausal women. Eur J Clin Invest 2022; 52:e13731. [PMID: 34890043 DOI: 10.1111/eci.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The prevalence and severity of nonalcoholic fatty liver disease (NAFLD) increase in women after menopause. This narrative review discusses the causes and consequences of NAFLD in postmenopausal women and describes how physical activity can contribute to its prevention. METHODS The authors followed the narrative review method to perform a critical and objective analysis of the current knowledge on the topic. The Medical Subject Heading keywords 'physical exercise', 'menopause', 'hormone replacement therapy', 'estradiol' and 'NAFLD' were used to establish a conceptual framework. The databases used to collect relevant references included Medline and specialized high-impact journals. RESULTS Higher visceral adiposity, higher rate of lipolysis in adipose tissue after oestrogen drop and changes in the expression of housekeeping proteins involved in hepatic lipid management are observed in women after menopause, contributing to NAFLD. Excessive liver steatosis leads to hepatic insulin resistance, oxidative stress and inflammation, accelerating NAFLD progression. Physical activity brings beneficial effects against several postmenopausal-associated complications, including NAFLD progression. Aerobic and resistance exercises partially counteract alterations induced by metabolic syndrome in sedentary postmenopausal women, impacting NAFLD progression and severity. CONCLUSIONS With the increased global obesity epidemic in developing countries, NAFLD is becoming a severe problem with increased prevalence in women after menopause. Evidence shows that physical activity may delay NAFLD development and severity in postmenopausal women, although the prescription of age-appropriate physical activity programmes is advisable to assure the health benefits.
Collapse
Affiliation(s)
- Emilio Molina-Molina
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Guilherme Eustaquio Furtado
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal.,Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Ana Vieira-Pedrosa
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Maria Teixeira
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Marcelo Paes Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luís Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, São Paulo, Brazil.,Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Fritsch LJ, McCaulley SJ, Johnson CR, Lawson NJ, Gorres-Martens BK. Exercise prevents whole body type 2 diabetes risk factors better than estradiol replacement in rats. J Appl Physiol (1985) 2021; 131:1520-1531. [PMID: 34590912 DOI: 10.1152/japplphysiol.00098.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The absence of estrogens in postmenopausal women is linked to an increased risk of type 2 diabetes (T2D) and estradiol replacement can decrease this risk. Notably, exercise can also treat and prevent T2D. This study seeks to understand the molecular mechanisms by which estradiol and exercise induce their beneficial effects via assessing whole body and cellular changes. Female Wistar rats were ovariectomized and fed a high-fat diet for 10 wk and divided into the following four experimental groups: 1) no treatment (control), 2) exercise (Ex), 3) estradiol replacement, and 4) Ex + estradiol. Both Ex and estradiol decreased the total body weight gain. However, only exercise effectively reduced the white adipose tissue (WAT) weight gain, food intake, blood glucose levels, and serum insulin levels. At the molecular level, exercise increased the noninsulin-stimulated pAkt levels in the WAT. In the liver, estradiol increased the protein expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) and estradiol decreased the hepatic protein expression of lipoprotein lipase (LPL). In the WAT, estradiol and exercise increased the protein expression of adipose triglyceride lipase (ATGL). Exercise provides better protection against T2D when considering whole body measurements, which may be due to increased noninsulin-stimulated pAkt in the WAT. However, at the cellular level, several molecular changes in fat metabolism and fat storage occurred in the liver and WAT with estradiol treatment.NEW & NOTEWORTHY Exercise provides better protection than estradiol against type 2 diabetes when considering whole body measurements including adipose tissue weight, blood glucose levels, and serum insulin levels, which may be due to increased noninsulin-stimulated pAkt in the adipose tissue. However, at the cellular level, several molecular changes in fat metabolism and fat storage occurred in the liver and adipose tissue with estradiol treatment.
Collapse
Affiliation(s)
- Luke J Fritsch
- Biology Department, Augustana University, Sioux Falls, South Dakota
| | - Skylar J McCaulley
- Biology Department, University of Sioux Falls, Sioux Falls, South Dakota
| | - Colton R Johnson
- Exercise Science Department, University of Sioux Falls, Sioux Falls, South Dakota
| | - Nicholaus J Lawson
- Exercise Science Department, University of Sioux Falls, Sioux Falls, South Dakota
| | | |
Collapse
|
7
|
Jacobs AJ, Roskam AL, Hummel FM, Ronan PJ, Gorres-Martens BK. Exercise improves high-fat diet- and ovariectomy-induced insulin resistance in rats with altered hepatic fat regulation. Curr Res Physiol 2020; 3:11-19. [PMID: 34746816 PMCID: PMC8562195 DOI: 10.1016/j.crphys.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
A high-fat diet (HFD) and loss of endogenous estrogens increases the risk for type 2 diabetes (T2D) and insulin resistance. Although exercise is known to prevent and manage insulin resistance, the cellular mechanisms remain largely unknown, especially in the context of a combined HFD and endogenous estrogen loss via ovariectomy (OVX). This study uses female Wistar rats to assess the effect of diet, endogenous estrogens, an exercise on insulin resistance, serum hormones, hepatic AMPK, hepatic regulators of fat metabolism, and expression of signaling molecules of the brain reward pathway. The combination of the HFD/OVX increased the homeostatic model assessment of insulin resistance (HOMA-IR), the glucose-insulin (G-I) index, and the serum adiponectin and leptin values, and exercise decreased these factors. The combination of the HFD/OVX decreased hepatic pAMPK, and exercise restored hepatic pAMPK, an important regulator of fat and glucose metabolism. Furthermore, consumption of the HFD by rats with intact ovaries (and endogenous estrogens) did not result in these drastic changes compared to intact rats fed a standard diet, suggesting that the presence of estrogens provides whole body benefits. Additionally, the HFD decreased the hepatic protein expression of acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), two proteins involved in de novo lipid synthesis and increased the hepatic protein expression of lipoprotein lipase (LPL), a protein involved in fat storage. Finally, exercise increased mRNA expression of the dopamine D2 receptor and tyrosine hydroxylase in the dopaminergic neuron cell body region of the ventral tegmental area, which is a key component of the brain reward pathway. Overall, this study demonstrates that exercise prevents insulin resistance even when a HFD is combined with OVX, despite hepatic changes in ACC, FAS, and LPL.
Collapse
Affiliation(s)
| | - Adam L Roskam
- Chemistry Department, Mount Marty College, Yankton, SD, USA
| | - Faith M Hummel
- Biology Department, Black Hills State University, Spearfish, SD, USA
| | - Patrick J Ronan
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Psychiatry and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
8
|
Shay DA, Welly RJ, Givan SA, Bivens N, Kanaley J, Marshall BL, Lubahn DB, Rosenfeld CS, Vieira-Potter VJ. Changes in nucleus accumbens gene expression accompany sex-specific suppression of spontaneous physical activity in aromatase knockout mice. Horm Behav 2020; 121:104719. [PMID: 32081742 PMCID: PMC7387966 DOI: 10.1016/j.yhbeh.2020.104719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
Abstract
Aromatase catalyzes conversion of testosterone to estradiol and is expressed in a variety of tissues, including the brain. Suppression of aromatase adversely affects metabolism and physical activity behavior, but mechanisms remain uncertain. The hypothesis tested herein was that whole body aromatase deletion would cause gene expression changes in the nucleus accumbens (NAc), a brain regulating motivated behaviors such as physical activity, which is suppressed with loss of estradiol. Metabolic and behavioral assessments were performed in male and female wild-type (WT) and aromatase knockout (ArKO) mice. NAc-specific differentially expressed genes (DEGs) were identified with RNAseq, and associations between the measured phenotypic traits were determined. Female ArKO mice had greater percent body fat, reduced spontaneous physical activity (SPA), consumed less energy, and had lower relative resting energy expenditure (REE) than WT females. Such differences were not observed in ArKO males. However, in both sexes, a top DEG was Pts, a gene encoding an enzyme necessary for catecholamine (e.g., dopamine) biosynthesis. In comparing male and female WT mice, top DEGs were related to sexual development/fertility, immune regulation, obesity, dopamine signaling, and circadian regulation. SPA correlated strongly with Per3, a gene regulating circadian function, thermoregulation, and metabolism (r = -0.64, P = .002), which also correlated with adiposity (r = 0.54, P = .01). In conclusion, aromatase ablation leads to gene expression changes in NAc, which may in turn result in reduced SPA and related metabolic abnormalities. These findings may have significance to post-menopausal women and those treated with an aromatase inhibitor.
Collapse
Affiliation(s)
- Dusti A Shay
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA
| | - Rebecca J Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA
| | - Scott A Givan
- Informatics Research Core Facility, University of Missouri, Columbia 65211, MO, USA
| | - Nathan Bivens
- DNA Core Facility, University of Missouri, Columbia 65211, MO, USA
| | - Jill Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA
| | - Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia 65211, MO, USA; Biomedical Sciences, University of Missouri, Columbia 65211, MO, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Department of Child Health, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia 65211, MO, USA; Biomedical Sciences, University of Missouri, Columbia 65211, MO, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia 65211, MO, USA; MU Informatics Institute, University of Missouri, Columbia 65211, MO, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA.
| |
Collapse
|
9
|
Gorres-Martens BK, Field TJ, Schmidt ER, Munger KA. Exercise prevents HFD- and OVX-induced type 2 diabetes risk factors by decreasing fat storage and improving fuel utilization. Physiol Rep 2019; 6:e13783. [PMID: 29981201 PMCID: PMC6035332 DOI: 10.14814/phy2.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/24/2022] Open
Abstract
Previous studies suggest that the loss of estrogens increase one's risk for type 2 diabetes (T2D), and combining the loss of estrogens with a high-fat diet (HFD) poses an even greater risk for T2D. The extent to which exercise can ameliorate the deleterious effects of estrogen loss combined with a HFD and the molecular mechanisms accounting for the whole body changes is currently unknown. Therefore, we fed female Wistar rats a standard diet or a HFD for 10 weeks. The rats fed the HFD were either ovariectomized (OVX) or their ovaries remained intact. A subset of the HFD/OVX rats also underwent exercise training on a motor-driven treadmill. Exercise significantly reduced the total body weight gain, periuterine white adipose tissue (WAT) weight, hyperglycemia, and hyperinsulinemia. Additionally, the ability to store fat, as measured by lipoprotein lipase (LPL) in the WAT, was increased in the HFD/OVX group; however, exercise reduced the LPL levels. Furthermore, the combination of the HFD with OVX decreased the WAT citrate synthase protein level, which was increased with exercise. These data suggest that even during the combined HFD/OVX physiological state, exercise can decrease several risk factors associated with T2D, decrease fat storage, and increase fuel utilization.
Collapse
Affiliation(s)
| | - Tyler J Field
- Exercise and Sport Sciences Department, Augustana University, Sioux Falls, South Dakota
| | - Emma R Schmidt
- Exercise and Sport Sciences Department, Augustana University, Sioux Falls, South Dakota
| | - Karen A Munger
- Research & Development, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| |
Collapse
|
10
|
|
11
|
Feng R, Wang L, Li Z, Yang R, Liang Y, Sun Y, Yu Q, Ghartey-Kwansah G, Sun Y, Wu Y, Zhang W, Zhou X, Xu M, Bryant J, Yan G, Isaacs W, Ma J, Xu X. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci 2018; 217:128-140. [PMID: 30517851 DOI: 10.1016/j.lfs.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is a major global cause of mortality, which has prompted numerous studies seeking to reduce the risk of heart failure and sudden cardiac death. While regular physical activity is known to improve CVD associated morbidity and mortality, the optimal duration, frequency, and intensity of exercise remains unclear. To address this uncertainty, various animal models have been used to study the cardioprotective effects of exercise and related molecular mechanism such as the mice training models significantly decrease size of myocardial infarct by affecting Kir6.1, VSMC sarc-KATP channels, and pulmonary eNOS. Although these findings cement the importance of animal models in studying exercise induced cardioprotection, the vast assortment of exercise protocols makes comparison across studies difficult. To address this issue, we review and break down the existent exercise models into categories based on exercise modality, intensity, frequency, and duration. The timing of sample collection is also compared and sorted into four distinct phases: pre-exercise (Phase I), mid-exercise (Phase II), exercise recovery (Phase III), and post-exercise (Phase IV). Finally, because the life-span of animals so are limited, small changes in animal exercise duration can corresponded to untenable amounts of human exercise. To address this limitation, we introduce the Life-Span Relative Exercise Time (RETlife span) as a method of accurately defining short-term, medium-term and long-term exercise relative to the animal's life expectancy. Systematic organization of existent protocols and this new system of defining exercise duration will allow for a more solid framework from which researchers can extrapolate animal model data to clinical application.
Collapse
Affiliation(s)
- Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhonguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yu Liang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Qiuxia Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Yanping Sun
- College of Pharmacy, Xi'an Medical University, Xi'an 710062, China
| | - Yajun Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Wei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD 21287, USA
| | - Guifang Yan
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - William Isaacs
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China.
| |
Collapse
|