1
|
Gerges SH, El-Kadi AOS. Changes in cardiovascular arachidonic acid metabolism in experimental models of menopause and implications on postmenopausal cardiac hypertrophy. Prostaglandins Other Lipid Mediat 2024; 173:106851. [PMID: 38740361 DOI: 10.1016/j.prostaglandins.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
3
|
Pieronne‐Deperrois M, Guéret A, Djerada Z, Crochemore C, Harouki N, Henry J, Dumesnil A, Larchevêque M, do Rego J, do Rego J, Nicol L, Richard V, Jaisser F, Kolkhof P, Mulder P, Monteil C, Ouvrard‐Pascaud A. Mineralocorticoid receptor blockade with finerenone improves heart function and exercise capacity in ovariectomized mice. ESC Heart Fail 2021; 8:1933-1943. [PMID: 33742556 PMCID: PMC8120350 DOI: 10.1002/ehf2.13219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS In post-menopausal women, incidence of heart failure with preserved ejection fraction is higher than in men. Hormonal replacement therapies did not demonstrate benefits. We tested whether the non-steroidal mineralocorticoid receptor antagonist finerenone limits the progression of heart failure in ovariectomized (OVX) mice with metabolic disorders. METHODS AND RESULTS Ovariectomy was performed in 4-month-old mice, treated or not at 7 months old for 1 month with finerenone (Fine) 1 mg/kg/day. Left ventricular (LV) cardiac and coronary endothelial functions were assessed by echocardiography, catheterization, and myography. Blood pressure was measured by plethysmography. Insulin and glucose tolerance tests were performed. Exercise capacity and spontaneous activity were measured on treadmill and in combined indirect calorimetric cages equipped with voluntary running wheel. OVX mice presented LV diastolic dysfunction without modification of ejection fraction compared with controls (CTL), whereas finerenone improved LV filling pressure (LV end-diastolic pressure, mmHg: CTL 3.48 ± 0.41, OVX 6.17 ± 0.30**, OVX + Fine 3.65 ± 0.55† , **P < 0.01 vs. CTL, † P < 0.05 vs. OVX) and compliance (LV end-diastolic pressure-volume relation, mmHg/RVU: CTL 1.65 ± 0.42, OVX 4.77 ± 0.37***, OVX + Fine 2.87 ± 0.26†† , ***P < 0.001 vs. CTL, †† P < 0.01 vs. OVX). Acetylcholine-induced endothelial-dependent relaxation of coronary arteries was impaired in ovariectomized mice and improved by finerenone (relaxation, %: CTL 86 ± 8, OVX 38 ± 3**, OVX + Fine 83 ± 7†† , **P < 0.01 vs. CTL, †† P < 0.01 vs. OVX). Finerenone improved decreased ATP production by subsarcolemmal mitochondria after ovariectomy. Weight gain, increased blood pressure, and decreased insulin and glucose tolerance in OVX mice were improved by finerenone. The exercise capacity at race was diminished in untreated OVX mice only. Spontaneous activity measurements in ovariectomized mice showed decreased horizontal movements, reduced time spent in a running wheel, and reduced VO2 and VCO2 , all parameters improved by finerenone. CONCLUSIONS Finerenone improved cardiovascular dysfunction and exercise capacity after ovariectomy-induced LV diastolic dysfunction with preserved ejection fraction.
Collapse
Affiliation(s)
| | - Alexandre Guéret
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Zoubir Djerada
- Pharmacology DepartmentReims University HospitalReimsFrance
| | - Clément Crochemore
- EA4651 Toxemac‐ABTE, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Najah Harouki
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Jean‐Paul Henry
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Anaïs Dumesnil
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Marine Larchevêque
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Jean‐Claude do Rego
- SCAC Behavioral Analysis Platform, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Jean‐Luc do Rego
- SCAC Behavioral Analysis Platform, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Lionel Nicol
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Vincent Richard
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Frédéric Jaisser
- Inserm U1138, Cordeliers Institute, Paris‐VI UniversityParisFrance
| | | | - Paul Mulder
- Inserm U1096 ENVI, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | - Christelle Monteil
- EA4651 Toxemac‐ABTE, Rouen Medical School, UNIROUEN, Normandy UniversityRouenFrance
| | | |
Collapse
|
4
|
Mishima MDV, Ladeira LCM, da Silva BP, Toledo RCL, de Oliveira TV, Costa NMB, Martino HSD. Cardioprotective action of chia (Salvia hispanica L.) in ovariectomized rats fed a high fat diet. Food Funct 2021; 12:3069-3082. [PMID: 33720242 DOI: 10.1039/d0fo03206a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction in estrogen levels is associated with the increased risk factors for cardiovascular disease development. The present study aimed to evaluate the effect of chia consumption in a standard diet (SD) or high fat diet (HFD) on ovariectomized (OVX) and non-ovariectomized (SHAM) rats, in relation to biometric measurements, oxidative stress, mineral content and ATPase enzymes in the heart. The study was conducted with 80 female Wistar rats, which received a SD or HFD for 18 weeks. During the first 7 weeks, the animals received the SD or HFD. Then, 40 rats were ovariectomized and 40 rats were SHAM operated. After recovery from surgery, the animals were allocated to 8 groups (n = 10) and they received one of the following diets for 8 weeks: SD, SD + chia, HFD and HFD + chia. In the OVX group, HFD increased weight gain, adiposity, cardiac hypertrophy, and nitric oxide (NO) and K concentration and decreased the Na+/K+ATPase activity. In combination with HFD, ovariectomy decreased the catalase activity, Mg, Cu and Zn concentration, total ATPase activity, and Na+/K+ATPase and Mg2 + ATPase activities; this group also presented higher NO, Ca, K, Fe and Mn concentration in the heart. The SHAM group fed chia presented a lower fat content in the heart. In the OVX group fed HFD, chia increased the activity of superoxide dismutase, decreased NO and maintained the content of minerals and ATPase enzymes. Thus, chia improved the biometric parameters of the heart, the antioxidant activity and maintained the content of minerals and ATPase enzymes, showing a cardioprotective action, but without reversing the deleterious effects of ovariectomy.
Collapse
Affiliation(s)
- Marcella Duarte Villas Mishima
- Department of Nutrition and Health. Universidade Federal de Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
5
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|