1
|
Rezaei M, Mehta JL, Zadeh GM, Khedri A, Rezaei HB. Myosin light chain phosphatase is a downstream target of Rho-kinase in endothelin-1-induced transactivation of the TGF-β receptor. Cell Biochem Biophys 2024; 82:1109-1120. [PMID: 38834831 DOI: 10.1007/s12013-024-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Rho-kinase (ROCK) regulates actomyosin contraction, coronary vasospasm, and cytoskeleton dynamics. ROCK and of NADPH oxidase (NOX) play an essential role in cardiovascular disease and proteoglycan synthesis, which promotes atherosclerosis by trapping low density lipoprotein. ROCK is activated by endothelin-1 (ET1) and transactivates the transforming growth factor beta receptor (TGFβR1), intensifying Smad signaling and proteoglycan production. This study aimed to identify the role of myosin light chain phosphatase (MLCP) as a downstream target of ROCK in TβR1 transactivation. METHODS Vascular smooth muscle cells were treated with ET1 and inhibitors of ROCK and MLCP were added. The phosphorylation levels of Smad2C, myosin light chain (MLC), and MLCP were monitored by western blot, and the mRNA expression of chondroitin 4-O-sulfotransferase 1 (C4ST1) was assessed by quantitative real-time PCR. RESULTS We examined ROCK's role in ET1-induced TGFβR1 activation. ROCK phosphorylated MLCP at the MYPT1 T853 residue, blocked by the ROCK inhibitor Y27632. ROCK also increased MLC phosphorylation and actomyosin contraction in response to ET1, enhanced by the phosphatase inhibitor Calyculin A. Calyculin A also increased C4ST1 expression, GAG-chain synthesizing enzymes. CONCLUSIONS This work suggests that ROCK is involved in ET1-mediated TβR1 activation through increased MLCP phosphorylation, which leads to Smad2C phosphorylation and stimulates C4ST1 expression.
Collapse
Affiliation(s)
- Maryam Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jawahar Lal Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Odeh H, Al-Hyasat TG, Habash A, Assaf FJN, Sallam RA, Abdellatif AJ, Bani Hani A, Badran DH, Mahafza WS, Salameh MA, Shatarat AT. Morphometric analysis of the inferior vena cava and its clinical correlations using abdomino-pelvic computed tomography: Series from a Jordanian population. Int J Surg Case Rep 2022; 98:107514. [PMID: 35985110 PMCID: PMC9411680 DOI: 10.1016/j.ijscr.2022.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction and importance This study aimed to determine the impact of DM, HTN and age on IVC dimensions as measured by CT scan relevant to guide interventions in a Jordanian population. Presentation of cases Two hundred patients were selected from those referred to the Radiology Department, Jordan University Hospital, Amman, Jordan for clinical evaluation. Patients were divided into three age subgroups. Age, sex, and comorbidities such as DM and HTN were identified and saved for later use. All dimensions of the IVC were measured using an abdomino-pelvic CT scanner. Clinical discussion A full morphometric analysis of the IVC would provide a better understanding of the dynamicity of the IVC in relation to its blood flow. Our results revealed that the length of the IVC was significantly shorter with age (P = 0.003). DM significantly affected the length of the IVC (P = 0.044). Hypertension also significantly affected the length of the IVC (P = 0.031), but it did not significantly affect the anterio-posterior or the transverse diameters of the IVC. Conclusion The length of the IVC was significantly shorter with age, DM and hypertension. Morphometric measures of the IVC are of great clinical importance as they may assist in medical or surgical intervention and follow-up. Determining the main dimensions of IVC is clinically important. This study revealed significant variability in IVC dimensions in relation to age. Diabetes and hypertension are important in changing the dimensions of IVC.
Collapse
Affiliation(s)
- Hadeel Odeh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 2022; 45:40-52. [PMID: 34616031 DOI: 10.1038/s41440-021-00733-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023]
Abstract
The regulation of muscle contraction is a critical function in the cardiovascular system, and abnormalities may be life-threatening or cause illness. The common basic mechanism in muscle contraction is the interaction between the protein filaments myosin and actin. Although this interaction is primarily regulated by intracellular Ca2+, the primary targets and intracellular signaling pathways differ in vascular smooth muscle and cardiac muscle. Phosphorylation of the myosin regulatory light chain (RLC) is a primary molecular switch for smooth muscle contraction. The equilibrium between phosphorylated and unphosphorylated RLC is dynamically achieved through two enzymes, myosin light chain kinase, a Ca2+-dependent enzyme, and myosin phosphatase, which modifies the Ca2+ sensitivity of contractions. In cardiac muscle, the primary target protein for Ca2+ is troponin C on thin filaments; however, RLC phosphorylation also plays a modulatory role in contraction. This review summarizes recent advances in our understanding of the regulation, physiological function, and pathophysiological involvement of RLC phosphorylation in smooth and cardiac muscles.
Collapse
|
4
|
Cui Y, Yang L, Liu X, Che C, Cheng J, Li P, Wen J, Yang Y. The decrease of MYPT1 is critical for impairment of NO-mediated vosodilation in mesenteric artery of the older spontaneously hypertensive rats. J Gerontol A Biol Sci Med Sci 2021; 77:424-432. [PMID: 34614147 DOI: 10.1093/gerona/glab290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) mediated vasodilatation is a fundamental response of vasculature, however, the regulation of NO signaling pathway on resistance vessels in the elderly hypertension is still unclear. The 16-weeks-spontaneously hypertensive rats (SHR), the 18-months-SHR (OldSHR), and the age matched Wistar-Kyoto rats were used to study the changes of mesenteric resistance artery dilatation caused by sodium nitroprusside (SNP). After pre-vasoconstriction by Norepinephrine (NE), the response of endothelium-denuded mesenteric artery ring to SNP was observed, and the changes in vascular response after pharmacological interventions of key nodes in the NO/sGC/cGMP/PKG1α signaling pathway were observed as well. RNA sequencing and functional enrichment analyses were used to provide information for conducting validation experiments. Vasodilation of NO in OldSHR was decreased, which significantly correlated with the reduction of PKG-mediated effect. Functional enrichment analysis of RNA sequencing showed that genes encoding important proteins such as sGC and MYPT1 (protein phosphatase 1 regulatory subunit 12A) were downregulated in OldSHR. Molecular biology validation results showed that mRNA expression of both α and β subunits of sGC were reduced, while mRNA and protein expression of PKG1α were reduced in OldSHR. More importantly, the expression of MYPT1 and p S668-MYPT1 was significantly reduced in OldSHR, even under the treatment of SNP. The experiment also revealed an enhanced cAMP system in vasodilatory in hypertension, while this function completely lost in the elderly hypertension. Therefore, a NO-mediated decrease in vascular smooth muscle relaxation was found in the elderly hypertension. The dysfunction in cGMP-PKG signaling, in particular, the decreased p S668-MYPT1 was mechanistically involved.
Collapse
Affiliation(s)
- Yiqin Cui
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Liju Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University.,Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqin Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Chang Che
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Pengyu Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University.,Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
6
|
Semiz AT, Teker AB, Yapar K, Doğan BSU, Takır S. Hydrogen sulfide dilates the isolated retinal artery mainly via the activation of myosin phosphatase. Life Sci 2020; 255:117834. [PMID: 32454158 DOI: 10.1016/j.lfs.2020.117834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
AIMS Hydrogen sulfide (H2S) is shown in ocular tissues and suggested to involve in the regulation of retinal circulation. However, the mechanism of H2S-induced relaxation on retinal artery is not clarified yet. Herein, we aimed to evaluate the role of several calcium (Ca2+) signaling and Ca2+ sensitization mechanisms in the relaxing effect of H2S donor, NaHS, on retinal arteries. MATERIALS AND METHODS Relaxing effects of NaHS (10-5-3 × 10-3M) were determined on precontracted retinal arteries in Ca2+ free medium as well as in the presence of the inhibitors of Ca2+ signaling and Ca2+ sensitization mechanisms. Additively, Ca2+ sensitivity of the contractile apparatus were evaluated by CaCl2-induced contractions in the presence of NaHS (3 × 10-3M). Functional experiments were furtherly assessed by protein and/or mRNA expressions, as appropriate. KEY FINDINGS The relaxations to NaHS were preserved in Ca2+ free medium while NaHS pretreatment decreased the responsiveness to CaCl2. The inhibitors of plasmalemmal Ca2+-ATPase, sarcoplasmic-endoplasmic reticulum Ca2+-ATPase, Na+-Ca2+ ion-exchanger and myosin light chain kinase (MLCK) unchanged the relaxations to NaHS. Likewise, Ca2+ sensitization mechanisms including, rho kinase, protein kinase C and tyrosine kinase were unlikely to mediate the relaxation to NaHS in retinal artery. Whereas, a marked reduction was determined in NaHS-induced relaxations in the presence of MLCP inhibitor, calyculin A. Supportively, NaHS pretreatment significantly reduced phosphorylation of MYPT1-subunit of MLCP. SIGNIFICANCE The relaxing effect of NaHS in retinal artery is likely to be related to the activation of MLCP and partly, to decrement in Ca2+ sensitivity of contractile apparatus.
Collapse
Affiliation(s)
- Ayça Toprak Semiz
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; Istanbul University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Ayşegül Başak Teker
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun 28200, Turkey
| | - Kürşad Yapar
- Department of Medical Pharmacology, Faculty of Medicine, Giresun University, Giresun 28200, Turkey
| | | | - Selçuk Takır
- Department of Medical Pharmacology, Faculty of Medicine, Giresun University, Giresun 28200, Turkey.
| |
Collapse
|
7
|
Elkhatib MAW, Mroueh A, Rafeh RW, Sleiman F, Fouad H, Saad EI, Fouda MA, Elgaddar O, Issa K, Eid AH, Eid AA, Abd-Elrahman KS, El-Yazbi AF. Amelioration of perivascular adipose inflammation reverses vascular dysfunction in a model of nonobese prediabetic metabolic challenge: potential role of antidiabetic drugs. Transl Res 2019; 214:121-143. [PMID: 31408626 DOI: 10.1016/j.trsl.2019.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
The onset of vascular impairment precedes that of diagnostic hyperglycemia in diabetic patients suggesting a vascular insult early in the course of metabolic dysfunction without a well-defined mechanism. Mounting evidence implicates adipose inflammation in the pathogenesis of insulin resistance and diabetes. It is not certain whether amelioration of adipose inflammation is sufficient to preclude vascular dysfunction in early stages of metabolic disease. Recent findings suggest that antidiabetic drugs, metformin, and pioglitazone, improve vascular function in prediabetic patients, without an indication if this protective effect is mediated by reduction of adipose inflammation. Here, we used a prediabetic rat model with delayed development of hyperglycemia to study the effect of metformin or pioglitazone on adipose inflammation and vascular function. At the end of the metabolic challenge, these rats were neither obese, hypertensive, nor hyperglycemic. However, they showed increased pressor responses to phenylephrine and augmented aortic and mesenteric contraction. Vascular tissues from prediabetic rats showed increased Rho-associated kinase activity causing enhanced calcium sensitization. An elevated level of reactive oxygen species was seen in aortic tissues together with increased Transforming growth factor β1 and Interleukin-1β expression. Although, no signs of systemic inflammation were detected, perivascular adipose inflammation was observed. Adipocyte hypertrophy, increased macrophage infiltration, and elevated Transforming growth factor β1 and Interleukin-1β mRNA levels were seen. Two-week treatment with metformin or pioglitazone or switching to normal chow ameliorated adipose inflammation and vascular dysfunction. Localized perivascular adipose inflammation is sufficient to trigger vascular dysfunction early in the course of diabetes. Interfering with this inflammatory process reverses this early abnormality.
Collapse
Affiliation(s)
- Mohammed A W Elkhatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali Mroueh
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Rim W Rafeh
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Fatima Sleiman
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Hosny Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Evan I Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ola Elgaddar
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Khodr Issa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Khaled S Abd-Elrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon.
| |
Collapse
|