1
|
Li Y, Liu Y, Xie S, Zhu Y, Ding X, Zhang W, Xian S, Wu G, Sun H, Yan J, Lu B, Yao Y, Qian W, Lu Y, Yang Y, Xu D, Huang R, Ji S. Metabolic response to burn injury: a comprehensive bibliometric study. Front Med (Lausanne) 2025; 11:1451371. [PMID: 39830385 PMCID: PMC11739346 DOI: 10.3389/fmed.2024.1451371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Objective Burns lead to systemic changes manifested by systemic disturbances in water-electrolyte balance and systemic metabolic and inflammatory responses. The hypermetabolic response after a burn injury relies on metabolic, hormonal, and inflammatory dysregulation mechanisms. This study aimed to provide a comprehensive bibliometric analysis of the burn metabolism research field, identifying key trends, influential contributors, and emerging research hotspots to inform future investigative efforts. Ultimately, we conducted an extensive review of the literature, synthesizing the findings to clarify the present understanding within our field of study. Methods We obtained 8,823 scientific publications on burn injury and metabolism from the core Web of Science (WOS) database collection. In this work, biblioshiny was used to visualize and analyze the data, and VOSviewer was used to verify the results. Results From a total of 8,823 publications, we found a general upward trend in annual publications and citation frequency. According to Bradford's Law, 21 high-production journals were classified as core sources based on the number of publications, and the most productive journal was Burns. The most published countries and authors in this field were the United States and Herndon DN. The most local cited document in this field was the article titled "Catecholamines: Mediator of the Hypermetabolic Response to Thermal Injury" authored by Wilmore DW. The thematic map showed that studies on injury, thermal injury, and sepsis were relatively mature. In contrast, research on metabolism, stress, and responses, and research on mortality, resistance, and management were less well-developed but were essential for the field. Conclusion Research on burns and metabolism is increasing. Based on the bibliometric analysis, our study summarized the complex interplay between burn-induced systemic metabolic alterations and inflammatory responses, emphasizing the significance of hypermetabolism and its management. The role of propranolol, insulin, oxandrolone, and nutritional interventions in modulating the hypermetabolic state was discussed. Additionally, our study underscored the challenges of managing sepsis and drug-resistant infections in burn patients as an important future area of research.
Collapse
Affiliation(s)
- Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinran Ding
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guosheng Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jiale Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Yeo HS, Lim JY. Effects of exercise prehabilitation on muscle atrophy and contractile properties in hindlimb-unloaded rats. Muscle Nerve 2023; 68:886-893. [PMID: 37772693 DOI: 10.1002/mus.27979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION/AIMS Effective strategies for rapid recovery after surgery are needed. Therefore, we investigated the effects of exercise prehabilitation (EP) and hindlimb unloading (HU) on muscle loss and contractility. METHODS Twenty-two Sprague-Dawley rats (12 wk old) were divided into normal control (NCON, n = 5), hindlimb unloading control (HCON, n = 10), and exercise prehabilitation followed by hindlimb unloading (Ex-preH, n = 7) groups. Ex-PreH performed exercise training for 14 days before hindlimb unloading for 14 days. Body composition was evaluated, along with muscle strength and function. The soleus (SOL) and extensor digitorum longus (EDL) muscle contractile properties were analyzed at the whole-muscle level. The titin concentration and myosin heavy chain (MHC) type composition were analyzed. RESULTS There were no effects of Ex-preH on total mass, lean mass, or muscle weight. Physical function was significantly higher in the Ex-preH group than in the HCON group (39.5° vs. 35.7°). The SOL twitch force (19.6 vs. 7.1 mN/m2 ) and specific force (107.3 vs. 61.2 mN/m2 ) were greater in Ex-preH group than in HCON group. EDL shortening velocity was higher in Ex-preH group than in HCON group (13.2 vs. 5.0 FL/s). The SOL full-length titin level was higher in Ex-preH group than in HCON group. DISCUSSION Exercise prehabilitation did not prevent muscle mass loss followed by muscle wasting, although it minimized the reduction of physical function. Therefore, exercise prehabilitation should be considered for rapid functional recovery after disuse due to surgery and injuries.
Collapse
Affiliation(s)
- Hyo-Seong Yeo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
3
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers D, Guns PJ, Gebruers N, Meirte J, van Breda E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J Cachexia Sarcopenia Muscle 2023; 14:758-770. [PMID: 36760077 PMCID: PMC10067483 DOI: 10.1002/jcsm.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - David Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Edegem, Belgium
| | - Jill Meirte
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Minnock D, Annibalini G, Valli G, Saltarelli R, Krause M, Barbieri E, De Vito G. Altered muscle mitochondrial, inflammatory and trophic markers and reduced exercise training adaptations in type 1 diabetes. J Physiol 2022; 600:1405-1418. [PMID: 34995365 PMCID: PMC9306774 DOI: 10.1113/jp282433] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Type 1 diabetes negatively affects skeletal muscle health; however, the effect of structured exercise training on markers of mitochondrial function, inflammation and regeneration is not known. Even though participants with type 1 diabetes and healthy control were comparable for cardiorespiratory fitness (VO2 max) and muscle strength at baseline, molecular markers related to muscle health were decreased in type 1 diabetes. After training, both groups increased the VO2 max and muscle strength, however, a larger improvement was achieved by the control group. The training intervention decreased glucose fluctuations and occurrence of hypoglycaemic events in type 1 diabetes, while signs of mild myopathy found in the muscle of participants with type 1 diabetes only partially improved after training Improving muscle health by specific exercise protocols is of considerable clinical interest in therapeutic strategies for improving type 1 diabetes management and prevent or delay long-term complications. ABSTRACT Growing evidence of impaired skeletal muscle health in people with type 1 diabetes points toward the presence of a mild myopathy in this population. However, this myopathic condition is not jet well characterised and often overlooked, even though it might affect the whole-body glucose homeostasis and the development of comorbidities. This study aims to compare skeletal muscle adaptations and changes in glycaemic control after 12 weeks of combined resistance and aerobic (COMB) training between people with type 1 diabetes and healthy controls, and whether the impaired muscle health in type 1 diabetes can affect the exercise-induced adaptations. The COMB training intervention increased aerobic capacity and muscle strength in both healthy and type 1 diabetes sedentary participants, although these improvements were higher in the control group. Better glucose control, reduced glycaemic fluctuations and fewer hypoglycaemic events were recorded at Post- compared to Pre-intervention in type 1 diabetes. Analysis of muscle biopsies showed an alteration of muscle markers of mitochondrial functions, inflammation, aging and growth/atrophy compared to the control group. These muscular molecular differences were only partially modified by the COMB training and might explain the reduced exercise adaptation observed in type 1 diabetes. In brief, type 1 diabetes impairs many aspects of skeletal muscle health and might affect the exercise-induced adaptations. Defining the magnitude of diabetic myopathy and the effect of exercise, including longer duration of the intervention, will drive the development of strategies to maximize muscle health in the type 1 diabetes population. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dean Minnock
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauricio Krause
- Department of Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
DeSpain K, Rosenfeld CR, Huebinger R, Wang X, Jay JW, Radhakrishnan RS, Wolf SE, Song J. Carotid smooth muscle contractility changes after severe burn. Sci Rep 2021; 11:18094. [PMID: 34508162 PMCID: PMC8433376 DOI: 10.1038/s41598-021-97732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Severe burns result in cardiovascular dysfunction, but responses in the peripheral vasculature are unclear. We hypothesize that severe burns disturb arterial contractility through acute changes in adrenergic and cholinergic receptor function. To address this, we investigated the changes in carotid artery contractility and relaxation following a severe burn. Thirty-four adult Sprague–Dawley male rats received a 40% total body surface area (TBSA) scald burn and fluid resuscitation using the Parkland formula. Control animals received sham burn procedure. Animals were serially euthanized between 6 h and 14 days after burn and endothelium-intact common carotid arteries were used for ex vivo force/relaxation measurements. At 6 h after burn, carotid arteries from burned animals demonstrated a > 50% decrease in cumulative dose-responses to norepinephrine (p < 0.05) and to 10−7 M angiotensin II (p < 0.05). Notably, pre-constricted carotid arteries also demonstrated reduced relaxation responses to acetylcholine (p < 0.05) 6 h after burn, but not to sodium nitroprusside. Histologic examination of cross-sectional planes revealed significant increases in carotid artery wall thickness in burned rats at 6 h versus 3 days, with increased collagen expression in tunica media at 3 days (p < 0.05). Carotid artery dysfunction occurs within 6 h after severe burn, demonstrating decreased sensitivity to adrenergic- and angiotensin II-induced vasoconstriction and acetylcholine-induced relaxation.
Collapse
Affiliation(s)
- Kevin DeSpain
- Department of Kinesiology, University of Texas Arlington, Arlington, TX, USA
| | | | - Ryan Huebinger
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofu Wang
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0644, USA
| | - Jayson W Jay
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0644, USA
| | - Ravi S Radhakrishnan
- Department of Surgery, Shriners Hospitals for Children - Galveston, Galveston, TX, USA.,Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0644, USA
| | - Steven E Wolf
- Department of Surgery, Shriners Hospitals for Children - Galveston, Galveston, TX, USA.,Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0644, USA
| | - Juquan Song
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0644, USA.
| |
Collapse
|
6
|
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am J Physiol Cell Physiol 2021; 321:C58-C71. [PMID: 33909503 DOI: 10.1152/ajpcell.00106.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical, and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Finally, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions that have the potential to significantly improve patient care.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Auger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Peris-Moreno D, Taillandier D, Polge C. MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci 2020; 21:ijms21186663. [PMID: 32933049 PMCID: PMC7555135 DOI: 10.3390/ijms21186663] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The E3 ubiquitin ligase MuRF1/TRIM63 was identified 20 years ago and suspected to play important roles during skeletal muscle atrophy. Since then, numerous studies have been conducted to decipher the roles, molecular mechanisms and regulation of this enzyme. This revealed that MuRF1 is an important player in the skeletal muscle atrophy process occurring during catabolic states, making MuRF1 a prime candidate for pharmacological treatments against muscle wasting. Indeed, muscle wasting is an associated event of several diseases (e.g., cancer, sepsis, diabetes, renal failure, etc.) and negatively impacts the prognosis of patients, which has stimulated the search for MuRF1 inhibitory molecules. However, studies on MuRF1 cardiac functions revealed that MuRF1 is also cardioprotective, revealing a yin and yang role of MuRF1, being detrimental in skeletal muscle and beneficial in the heart. This review discusses data obtained on MuRF1, both in skeletal and cardiac muscles, over the past 20 years, regarding the structure, the regulation, the location and the different functions identified, and the first inhibitors reported, and aim to draw the picture of what is known about MuRF1. The review also discusses important MuRF1 characteristics to consider for the design of future drugs to maintain skeletal muscle mass in patients with different pathologies.
Collapse
|
8
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
9
|
Auger C, Knuth CM, Abdullahi A, Samadi O, Parousis A, Jeschke MG. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Mol Metab 2019; 29:12-23. [PMID: 31668383 PMCID: PMC6728757 DOI: 10.1016/j.molmet.2019.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Browning, the conversion of white adipose tissue (WAT) to a beige phenotype, has gained interest as a strategy to induce weight loss and improve insulin resistance in metabolic disorders. However, for hypermetabolic conditions stemming from burn trauma or cancer cachexia, browning is thought to contribute to energy wasting and supraphysiological nutritional requirements. Metformin's impact on this phenomenon and underlying mechanisms have not been explored. Methods We used both a murine burn model and human ex vivo adipose explants to assess metformin and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)'s effects on the development of subcutaneous beige adipose. Enzymes involved in fat homeostasis and browning, as well as mitochondrial dynamics, were assessed to determine metformin's effects. Results Treatment with the biguanide metformin lowers lipolysis in beige fat by inducing protein phosphatase 2A (PP2A) independently of adenosine monophosphate kinase (AMPK) activation. Increased PP2A activity catalyzes the dephosphorylation of acetyl-CoA carboxylase (Ser 79) and hormone sensitive lipase (Ser 660), thus promoting fat storage and the “whitening” of otherwise lipolytic beige adipocytes. Moreover, co-incubation of metformin with the PP2A inhibitor okadaic acid countered the anti-lipolytic effects of this biguanide in human adipose. Additionally, we show that metformin does not activate this pathway in the WAT of control mice and that AICAR sustains the browning of white adipose, offering further evidence that metformin acts independently of this cellular energy sensor. Conclusions This work provides novel insights into the mechanistic underpinnings of metformin's therapeutic benefits and potential as an agent to reduce the lipotoxicity associated with hypermetabolism and adipose browning. Metformin prevents the catabolism of murine iWAT tissue post-burn injury. Mitochondrial respiration and uncoupling in adipose are decreased by metformin. Metformin, independently of AMPK, reduces adipose lipolysis and β-oxidation via PP2A. AICAR treatment activates AMPK in peripheral adipose leading to sustained browning. PP2A is directly induced by metformin in scWAT, lowering ACC/HSL phosphorylation.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Carly M Knuth
- University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | | | - Osai Samadi
- University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Alexandra Parousis
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada; University of Toronto, Toronto, Ontario, M5S 1A1, Canada.
| |
Collapse
|