1
|
Paris MT, Zero AM, Rice CL. Influence of stimulation frequency on early and late phase rate of torque and velocity development. J Appl Physiol (1985) 2024; 137:349-356. [PMID: 38900861 DOI: 10.1152/japplphysiol.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The early (≤50 ms) rate of torque development (RTD) is dependent upon the speed of neuromuscular activation; however, few studies have evaluated the determinants of rate of velocity development (RVD), which may be load-dependent. The purpose here was to explore the relationship between stimulation frequency with the early and late (≥100 ms) phase isometric RTD and isotonic RVD. The knee extensors of 16 (five female) young recreationally active participants were stimulated using 14 frequencies from 1 to 100 Hz during isometric and isotonic ("unloaded" and 7.5% of the isometric maximal voluntary contraction [MVC]) contractions. Isometric RTD and isotonic RVD were evaluated for the early (0-50 ms) and late (0-100 ms) phases from torque and velocity onset, respectively. Sigmoid functions were fit and bilinear regressions were used to examine the slopes of the steep portion of the curve and the plateau frequency. RTD- and RVD-frequency relationships were well described by a sigmoid function (all r2 > 0.96). Compared with the late phase, early isometric RTD, and unloaded RVD displayed lower slopes (all P ≤ 0.001) and higher plateau frequencies (all P < 0.001). In contrast, early and late RVD of a moderately loaded isotonic contraction did not display different slopes (P = 0.055) or plateau frequencies (P = 0.690). Early isometric RTD and unloaded isotonic RVD are more dependent on changes in stimulation frequency compared with late phases. However, RVD for a moderately loaded isotonic contraction displayed similar responses for the early and late phases. Therefore, a high frequency of activation is critical for early torque and velocity generation but dependent upon the load for isotonic contractions.NEW & NOTEWORTHY We show that during an "unloaded" isotonic contraction, the early phase rate of velocity development is more dependent upon a high electrical activation frequency compared with the late phase, similar to isometric torque. However, early and late phase rates of velocity development of moderately loaded isotonic contractions display similar responses. These results indicate that the determinants of isotonic shortening function are dependent on the externally applied load, highlighting the importance of task-specificity of contraction.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Paris MT, Rice CL. Voluntary activation of human knee extensors during isotonic shortening contractions. Eur J Appl Physiol 2024; 124:2171-2181. [PMID: 38436666 DOI: 10.1007/s00421-024-05441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE The interpolated twitch technique (ITT) is often used to assess voluntary activation during isometric contractions; however, this may have limited relevance to dynamic contractions. Although the ITT has been applied to relatively slow isokinetic contractions (< 150°/s), it has received limited consideration during unconstrained velocity (i.e., isotonic) contractions, despite their relevance to natural movements. Here, we explored the ITT during isotonic knee extension contractions using a modified dynamometer. METHODS Young males (n = 6) and females (n = 4) performed isometric and isotonic knee extension contractions of sub-maximal and maximal intensities with doublet (150 Hz) muscle belly stimulations to assess voluntary activation. Following each voluntary isotonic contraction (velocity range ~ 35°/s to ~ 275°/s), resting potentiated doublets were evaluated during passive joint rotation at the same angular velocity achieved during voluntary efforts, to account for force-velocity characteristics. Correlations between voluntary activation and the proportion of maximal torque or power were evaluated for isometric and isotonic contractions, respectively. RESULTS Isometric voluntary activation was strongly correlated with increasing torque output (r = 0.96, p < 0.001). Doublet torque during passive joint rotation displayed a hyperbolic relationship with increasing angular velocity (r = 0.98, p < 0.001). Isotonic voluntary activation was strongly correlated with increasing power output (r = 0.89, p < 0.001). During maximal effort contractions, no differences were observed in voluntary activation between isometric and isotonic conditions (89.4% vs. 89.2%, p = 0.904). CONCLUSIONS The ITT is a valid approach to evaluate voluntary activation during an isotonic contraction using a modified dynamometer. Participants were able to achieve a similar high level of voluntary activation during isometric and isotonic contractions.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
3
|
Zero AM, Paris MT, Rice CL. Differential effects of stimulation frequency on isometric and concentric isotonic contractile function in human quadriceps. J Appl Physiol (1985) 2024; 137:111-124. [PMID: 38841755 DOI: 10.1152/japplphysiol.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Electrically evoked contractions are used to assess the relationship between frequency input and contractile output to characterize inherent muscle function, and these have been done mostly with isometric contractions (i.e., no joint rotation). The purpose was to compare the electrically stimulated frequency and contractile function relationship during isometric (i.e., torque) with isotonic (i.e., concentric torque, angular velocity, and mechanical power) contractions. The knee extensors of 16 (5 female) young recreationally active participants were stimulated (∼1-2.5 s) at 14 frequencies from 1 to 100 Hz. This was done during four conditions, which were isometric and isotonic at loads of 0 (unloaded), 7.5%, and 15% isometric maximal voluntary contraction (MVC), and repeated on separate days. Comparisons across contractile parameters were made as a % of 100 Hz. Independent of the load, the mechanical power-frequency relationship was rightward shifted compared with isometric torque-frequency, concentric torque-frequency, and velocity-frequency relationships (all P ≤ 0.04). With increasing load (0%-15% MVC), the isotonic concentric torque-frequency relationship was shifted leftward systematically from 15 to 30 Hz (all P ≤ 0.04). Conversely, the same changes in load caused a rightward shift in the velocity-frequency relationship from 1 to 40 Hz (all P ≤ 0.03). Velocity was leftward shifted of concentric torque in the unloaded isotonic condition from 10 to 25 Hz (all P ≤ 0.03), but concentric torque was leftward shifted of velocity at 15% MVC isotonic condition from 10 to 50 Hz (all P ≤ 0.03). Therefore, isometric torque is not a surrogate to evaluate dynamic contractile function. Interpretations of evoked contractile function differ depending on contraction type, load, and frequency, which should be considered relative to the specific task.NEW & NOTEWORTHY In whole human muscle, we showed that the electrically stimulated power-frequency relationship was rightward shifted of the stimulated isometric torque-frequency relationship independent of isotonic load, indicating that higher stimulation frequencies are needed to achieve tetanus. Therefore, interpretations of evoked contractile function differ depending on contraction type (isometric vs. dynamic), load, and frequency. And thus, isometric measures may not be appropriate as a surrogate assessment when evaluating dynamic isotonic contractile function.
Collapse
Affiliation(s)
- Alexander M Zero
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Michael T Paris
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Faculty of Health, School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Charles L Rice
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Jacob KBE, Hinks A, Power GA. The day-to-day reliability of residual force enhancement during voluntary and electrically stimulated contractions. Appl Physiol Nutr Metab 2023; 48:183-197. [PMID: 36473169 DOI: 10.1139/apnm-2022-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Residual force enhancement (rFE) is characterized by increased steady-state isometric force following active muscle lengthening compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. Many studies have characterized rFE in humans; however, the day-to-day reliability of rFE is unclear. We aimed to examine day-to-day reliability of rFE across various contraction types in the dorsiflexors in males and females. Twenty-five recreationally active young adults completed two visits, 1 week apart. Following determination of maximum voluntary contraction (MVC) strength, rFE was assessed during maximal voluntary effort, 20% MVC electrically stimulated, and 20% MVC torque-matching conditions. Each rFE condition was completed at two joint excursions: 0°-20° plantar flexion (PF) and 0°-40° PF. Intraclass correlation coefficients (ICC) assessed relative reliability and typical error of measurement (TEM), and the correlation variability of TEM (CVTEM) assessed absolute reliability. Electrically stimulated contractions demonstrated the highest reliability at 40° PF (ICC: 0.9; CVTEM: 22.8%) and 20° PF (ICC: 0.8; CVTEM: 34.3%), followed by maximal voluntary contractions at 40° PF (ICC: 0.7; CVTEM: 55.1%) and 20° PF (ICC: 0.1; CVTEM: 81.1%). The torque-matching trials showed poor reliability for 20° and 40° PF (ICC: -0.1 to 0.3; CVTEM: 118.1%-155.2%). Our results demonstrate higher reliability of rFE when stretching to the descending limb of the torque-angle relationship compared with the plateau region, and in electrically stimulated compared with voluntary contractions in the dorsiflexors for both males and females.
Collapse
Affiliation(s)
- Kaitlyn B E Jacob
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Comparison of prolonged low-frequency force depression assessed using isometric torque and isotonic power following a dynamic fatiguing task. Eur J Appl Physiol 2022; 122:2597-2606. [PMID: 36098858 DOI: 10.1007/s00421-022-05042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Prolonged low-frequency force depression (PLFFD) occurs following both dynamic and static fatiguing tasks, but it has been assessed predominately using measures of isometric torque. However, it is unknown whether PLFFD induced during dynamic tasks is adequately characterized by isometric torque, which excludes velocity and power. The purpose of this study was to compare PLFFD assessed using isometric torque and isotonic power following a concentric fatiguing task. METHODS Young (18-31 years) males (n = 9) and females (n = 4) performed isotonic plantar flexion contractions until a ~ 75% reduction in peak power. Isotonic and isometric contractions were electrically evoked at 10 Hz and 50 Hz via tibial nerve stimulation. Isotonic and isometric PLFFD was assessed as the ratio of 10 to 50 Hz for power and torque, respectively. Recovery was assessed immediately, and at 2.5, 5, 10, 20, and 30 min after task termination. RESULTS Relative to baseline, 10:50 Hz ratio assessed using isotonic power was reduced more than isometric torque (30 min 41 ± 17 vs. 25 ± 12% reduction, p = 0.001); however, both contraction modes displayed similar trajectories throughout recovery (p = 0.906). The larger reduction in isotonic 10:50 Hz ratio was due to greater impairments in 10 Hz power compared to 10 Hz isometric torque (30 min 38 ± 20 vs. 21 ± 11% reduction, p < 0.001). CONCLUSION The similar trajectories of 10:50 Hz ratios throughout recovery indicate that PLFFD can be adequately characterized using either isometric torque or isotonic power.
Collapse
|
6
|
Paris MT, McNeil CJ, Power GA, Rice CL, Dalton BH. Age-related performance fatigability: a comprehensive review of dynamic tasks. J Appl Physiol (1985) 2022; 133:850-866. [PMID: 35952347 DOI: 10.1152/japplphysiol.00319.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult ageing is associated with a myriad of changes within the neuromuscular system, leading to reductions in contractile function of old adults. One of the consequences of these age-related neuromuscular adaptations is altered performance fatigability, which can limit the ability of old adults to perform activities of daily living. Whereas age-related fatigability of isometric tasks has been well characterized, considerably less is known about fatigability of old adults during dynamic tasks involving movement about a joint, which provides a more functionally relevant task compared to static contractions. This review provides a comprehensive summary of age-related fatigability in dynamic contractions, where the importance of task specificity is highlighted with a brief discussion of the potential mechanisms responsible for differences in fatigability between young and old adults. The angular velocity of the task is critical for evaluating age-related fatigability, as tasks which constrain angular velocity (i.e., isokinetic) produce equivocal age-related differences in fatigability, whereas tasks involving unconstrained velocity (i.e., isotonic-like) consistently induce greater fatigability of old compared to young adults. These unconstrained velocity tasks, that are more closely associated with natural movements, offer an excellent model to uncover the underlying age-related mechanisms of increased fatigability. Future work evaluating the mechanisms of increased age-related fatigability of dynamic tasks should be evaluated using task-specific contractions (i.e., dynamic), particularly for assessment of spinal and supra-spinal components. Advancing our understanding of age-related fatigability is likely to yield novel insights and approaches for improving mobility limitations in old adults.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
7
|
Zero AM, Paris MT, Rice CL. Frequency dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors. J Appl Physiol (1985) 2022; 133:490-505. [PMID: 35796610 DOI: 10.1152/japplphysiol.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose was to investigate whether post-activation potentiation (PAP) mitigates power (i.e., torque x angular velocity) loss during dynamic fatiguing contractions and subsequent recovery by enhancing either muscle torque or angular velocity in human plantar flexors. In 12 participants, electrically stimulated (1, 10 and 50 Hz) dynamic contractions were done during a voluntary isotonic fatiguing protocol (20 and 50% voluntary decreases) until a 75% loss in voluntary peak power, and throughout 30 minutes of recovery. At the initial portion of fatigue (20% decrease), power responses of evoked low frequencies (1 and 10 Hz) were enhanced due to PAP (156 and 137%, respectively, P<0.001), while voluntary maximal efforts were depressed due to fatiguing mechanisms. Following the fatiguing task, prolonged low-frequency force depression (PLFFD) was evident by reduced 10:50 Hz peak power ratios (21 - 24%) from 3-min onwards during the 30-min recovery (P<0.005). Inducing PAP with maximal voluntary contractions during PLFFD enhanced the peak power responses of low frequencies (1 and 10 Hz) by 128 - 160 %, P<0.01. This PAP response mitigated the effects of PLFFD as the 1:50 (P<0.05) and 10:50 (P>0.4) Hz peak power ratios were greater or not different from the pre-fatigue values. Additionally, PAP enhanced peak torque more than peak angular velocity during both baseline and fatigue measurements (P<0.03). These results indicate that PAP can ameliorate PLFFD acutely when evaluated during concentric isotonic contractions and that peak torque is enhanced to a greater degree compared to peak angular velocity at baseline and in a fatigued state.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, grid.443228.bWestern University, London, Ontario, Canada
| |
Collapse
|
8
|
Trade-Off Between Maximal Power Output and Fatigue Resistance of the Knee Extensors for Older Men. J Aging Phys Act 2022; 30:1003-1013. [PMID: 35453123 DOI: 10.1123/japa.2021-0384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
This study investigated associations of fatigue resistance determined by an exercise-induced decrease in neuromuscular power with prefatigue neuromuscular strength and power of the knee extensors in 31 older men (65-88 years). A fatigue task consisted of 50 consecutive maximal effort isotonic knee extensions (resistance: 20% of prefatigue isometric maximal voluntary contraction torque) over a 70° range of motion. The average of the peak power values calculated from the 46th to 50th contractions during the fatigue task was normalized to the prefatigue peak power value, which was defined as neuromuscular fatigue resistance. Neuromuscular fatigue resistance was negatively associated with prefatigue maximal power output (r = -.530) but not with prefatigue maximal voluntary contraction torque (r = -.252). This result highlights a trade-off between prefatigue maximal power output and neuromuscular fatigue resistance, implying that an improvement in maximal power output might have a negative impact on neuromuscular fatigue resistance.
Collapse
|
9
|
Ha PL, Dalton BE, Alesi MG, Smith TM, VanDusseldorp TA, Feito Y, Hester GM. No sex differences in evoked contractile properties after fatiguing isometric and isotonic exercise for the plantar flexors. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:504-513. [PMID: 36458388 PMCID: PMC9716306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Females tend to fatigue less than males after isometric exercise, but less is clear for isotonic exercise. Further, there have been relatively few sex comparisons for fatigability of the plantar flexors (PFs). We sought to investigate potential sex differences in contractile properties after a sustained maximal voluntary isometric contraction (MVIC) and isotonic contractions. METHODS Twenty-seven physically active males (n=14; 22±2 yrs) and females (n=13; 21±2 yrs) randomly performed a 2 min MVIC and 120 concentric isotonic (30% MVIC) contractions for the PFs on separate visits. Before and after each fatiguing task, muscle activation was obtained from brief MVICs, which was followed (~2 sec) by tibial nerve stimulation at rest. Contractile properties including peak twitch, absolute and normalized time to peak twitch, and half relaxation time were calculated. RESULTS No sex differences existed for fatigue-induced changes in muscle activation (p=0.09-0.41; d=0.33-0.69) or contractile properties (p=0.19-0.96; d=0.06-0.94). CONCLUSIONS Peripheral fatigue, as indicated by contractile parameters, did not differ between sexes after isometric or isotonic exercise. The PFs similar fiber type proportions between sexes or greater fiber type heterogeneity may explain why sex differences in fatigability, though common in other muscle groups (e.g., knee extensors), were not expressed in this muscle group.
Collapse
Affiliation(s)
- Phuong L. Ha
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Benjamin E. Dalton
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Michaela G. Alesi
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Tyler M. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Trisha A. VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA;,Bonafide Health, LLC, Research and Development, Harrison, NY, USA
| | - Yuri Feito
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA;,American College of Sports Medicine, Indianapolis, IN, USA
| | - Garrett M. Hester
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA;,Corresponding author: Garrett M. Hester, Kennesaw State University, 520 Parliament Garden Way NW, Kennesaw, GA 30144, USA E-mail:
| |
Collapse
|
10
|
Gonçalves LMN, Siéssere S, Cecilio FA, Hallak JEC, de Vasconcelos PB, Júnior WM, Regalo IH, Palinkas M, Regalo SCH. Amyotrophic Lateral Sclerosis: An Analysis of the Electromyographic Fatigue of the Masticatory Muscles. Prague Med Rep 2022; 123:258-265. [DOI: 10.14712/23362936.2022.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis is a chronic degenerative disease that affects motor neurons, thereby promoting functional changes in the human body. The study evaluated the electromyographic fatigue threshold of the masseter and temporal muscles of subjects with amyotrophic lateral sclerosis. A total of eighteen subjects were divided into two groups: amyotrophic lateral sclerosis (n=9) and disease-free control (n=9). The groups were equally divided according to gender (7 males, 2 females). The fatigue threshold was analysed using median frequencies obtained during the 5-second window (initial [IP], mid [MP], and final [FP] periods) of electromyographic signalling of the masseter and temporal muscles bilaterally, with reduction in muscle force during maximal voluntary dental clenching. Significant difference (p<0.05) in the left temporal muscle: IP (p=0.05) and MP (p=0.05) periods was demonstrated. The amyotrophic lateral sclerosis group showed a decrease in median frequency of the electromyographic signal of the masseter and temporal muscles compared to the control group. Amyotrophic lateral sclerosis promotes functional impairment of the stomatognathic system, especially at the electromyographic fatigue threshold of the masticatory muscles.
Collapse
|
11
|
Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test. Sci Rep 2021; 11:22677. [PMID: 34811406 PMCID: PMC8608821 DOI: 10.1038/s41598-021-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The limit of dynamic endurance during repetitive contractions has been referred to as the point of muscle fatigue, which can be measured by mechanical and electrophysiological parameters combined with subjective estimates of load tolerance for revealing the human real-world capacity required to work continuously. In this study, an isotonic muscular endurance (IME) testing protocol under a psychophysiological fatigue criterion was developed for measuring the retentive capacity of the power output of lower limb muscles. Additionally, to guide the development of electrophysiological evaluation methods, linear and non-linear techniques for creating surface electromyography (sEMG) models were compared in terms of their ability to estimate muscle fatigue. Forty healthy college-aged males performed three trials of an isometric peak torque test and one trial of an IME test for the plantar flexors and knee and hip extensors. Meanwhile, sEMG activity was recorded from the medial gastrocnemius, lateral gastrocnemius, vastus medialis, rectus femoris, vastus lateralis, gluteus maximus, and biceps femoris of the right leg muscles. Linear techniques (amplitude-based parameters, spectral parameters, and instantaneous frequency parameters) and non-linear techniques (a multi-layer perception neural network) were used to predict the time-dependent power output during dynamic contractions. Two mechanical manifestations of muscle fatigue were observed in the IME tests, including power output reduction between the beginning and end of the test and time-dependent progressive power loss. Compared with linear mapping (linear regression) alone or a combination of sEMG variables, non-linear mapping of power loss during dynamic contractions showed significantly higher signal-to-noise ratios and correlation coefficients between the actual and estimated power output. Muscular endurance required in real-world activities can be measured by considering the amount of work produced or the activity duration via the recommended IME testing protocol under a psychophysiological termination criterion. Non-linear mapping techniques provide more powerful mapping of power loss compared with linear mapping in the IME testing protocol.
Collapse
|
12
|
Rabello R, Nodari C, Scudiero F, Borges I, Fitarelli L, Bianchesse J, Rodrigues R. Effects of task and hip-abductor fatigue on lower limb alignment and muscle activation. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Purpose
Fatigue-induced hip-abductor weakness may exacerbate lower-limb misalignments during different dynamic single-leg tasks. We sought to evaluate the effects of fatigue and task on lower limb kinematics and muscle activation and to find associations between measurements obtained in two tasks.
Methods
One-group pretest–posttest design. Seventeen healthy adults (9 W) performed the single-leg squat (SLSQUAT) and the single-leg hop (SLHOP) before and after a hip-abduction fatigue protocol. Hip adduction, knee frontal plane projection angle (knee FPPA) and heel inversion displacement were measured during the eccentric phase of the SLSQUAT and the SLHOP, as well as activation of the gluteus medius (GMed), tensor fascia latae (TFL), peroneus longus (PER) and tibialis anterior (TA). Moments and tasks were compared using a repeated-measures two-way ANOVA. Correlation between tasks was evaluated using Spearman’s correlation.
Results
No differences in kinematics or activation were found between moments. Hip-adduction displacement (P = 0.005), GMed (P = 0.008) and PER (P = 0.037) activation were higher during SLSQUAT, while TA activation was higher during SLHOP (P < 0.001). No differences were found between tasks in knee FPPA and heel inversion. Hip-adduction and knee FPPA were not correlated between tasks, while ankle inversion displacement was positively correlated (rs = 0.524–0.746).
Conclusion
Different characteristics of SLSQUAT (slower and deeper) seem to have led to increased hip adduction displacement, GMed, and PER activation and decreased TA activation, likely due to higher balance requirements. However, hip-abductor fatigue didn’t influence lower-limb alignment during the tasks. Finally, evaluations should be performed with different single-leg tasks since they don’t give the same lower-limb alignment information.
Collapse
|
13
|
Ha PL, Dalton BE, Alesi MG, Smith TM, VanDusseldorp TA, Feito Y, Hester GM. Isometric versus isotonic contractions: Sex differences in the fatigability and recovery of isometric strength and high-velocity contractile parameters. Physiol Rep 2021; 9:e14821. [PMID: 33991453 PMCID: PMC8123565 DOI: 10.14814/phy2.14821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate potential sex differences in the fatigue‐ and recovery‐induced responses of isometric strength and power, as well as select dynamic contractile parameters after isometric and isotonic plantar flexor (PF) contractions. Healthy males (n = 12; age = 21.8 ± 2.2 years) and females (n = 14; age = 21.4 ± 2.5 years) performed a 2‐min maximal voluntary isometric contraction and 120 concentric isotonic (30% peak isometric torque) contractions of the PFs on separate visits. Isometric strength, isotonic power, as well as torque‐ and velocity‐related parameters were recorded before, immediately after, and throughout 10 min of recovery. Rate of EMG rise (RER) for the medial gastrocnemius (MG) and soleus was also obtained. All measures responded similarly between sexes after both fatiguing modalities (p > 0.05), except RER of the MG which, in males demonstrated both, a greater decrease during isotonic contractions (p = 0.038, ηp2 = 0.174) and more rapid recovery after isometric exercise (p = 0.043, ηp2 = 0.166). Although not significant, a nearly large effect size was demonstrated for the fatigue‐induced decrease in isometric strength (p = 0.061; d = 0.77) due to relative decreases tending to be greater in males (−29% vs. −17%). Regardless of fatiguing modality, sex differences were minimal for fatigue and recovery‐related responses in muscle function for the PFs, although the difference for RER may indicate a unique origin of fatigue. Further support for the disassociation between the response in isometric strength and power after fatiguing exercise was also demonstrated.
Collapse
Affiliation(s)
- Phuong L Ha
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Benjamin E Dalton
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Michaela G Alesi
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Tyler M Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Yuri Feito
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Garrett M Hester
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
14
|
Hinks A, Hess A, Debenham MIB, Chen J, Mazara N, Inkol KA, Cervone DT, Spriet LL, Dalton BH, Power GA. Power loss is attenuated following a second bout of high-intensity eccentric contractions due to the repeated bout effect's protection of rate of torque and velocity development. Appl Physiol Nutr Metab 2020; 46:461-472. [PMID: 33125854 DOI: 10.1139/apnm-2020-0641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output. We investigated the influence of the RBE on power production and estimated fatigue- and damage-induced neuromuscular impairments following repeated high-intensity eccentric contractions. Twelve healthy adult males performed 5 sets of 30 maximal eccentric elbow flexions and repeated an identical bout 4 weeks later. Recovery was tracked over 7 days following both bouts. Reduced maximum voluntary isometric contraction torque, and increased serum creatine kinase and self-reported soreness indirectly inferred muscle damage. Peak isotonic power, time-dependent measures - rate of velocity development (RVD) and rate of torque development (RTD) - and several electrophysiological indices of neuromuscular function were assessed. The RBE protected peak power, with a protective index of 66% 24 h after the second eccentric exercise bout. The protection of power also related to preserved RVD (R2 = 0.61, P < 0.01) and RTD (R2 = 0.39, P < 0.01). Furthermore, the RBE's protection against muscle damage permitted the estimation of fatigue-associated neuromuscular performance decrements following eccentric exercise. Novelty: The repeated bout effect protects peak isotonic power. Protection of peak power relates to preserved rates of torque and velocity development, but more so rate of velocity development. The repeated bout effect has little influence on indices of neuromuscular fatigue.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adam Hess
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mathew I B Debenham
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jackey Chen
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Mazara
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Keaton A Inkol
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daniel T Cervone
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Akagi R, Hinks A, Power GA. Differential changes in muscle architecture and neuromuscular fatigability induced by isometric resistance training at short and long muscle-tendon unit lengths. J Appl Physiol (1985) 2020; 129:173-184. [PMID: 32552430 DOI: 10.1152/japplphysiol.00280.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We evaluated the effects of differential muscle architectural adaptations on neuromuscular fatigue resistance. Seven young males and six females participated in this study. Using a longitudinal within-subject design, legs were randomly assigned to perform isometric training of the tibialis anterior (TA) three times per week for 8 wk at a short (S-group) or long muscle-tendon unit length (L-group). Before and following training, fascicle length (FL) and pennation angle (PA) of the TA were assessed. As well, fatigue-related time course changes in isometric maximal voluntary contraction (MVC) torque and isotonic peak power (20% MVC resistance) were determined before, immediately after, and 1, 2, 5, and 10 min following task failure. The fatiguing task consisted of repeated maximal effort isotonic (20% MVC resistance) contractions over a 40° range of motion until the participant reached a 40% reduction in peak power. Although there was no clear improvement in neuromuscular fatigue resistance following training in either group (P = 0.081; S-group: ∼20%; L-group: ∼51%), the change in neuromuscular fatigue resistance was related positively to the training-induced increase in PA (∼6%, P < 0.001) in the S-group (r = 0.739, P = 0.004) and negatively to the training-induced increase in FL (∼4%, P = 0.001) in the L-group (r = -0.568, P = 0.043). Both groups recovered similarly for MVC torque and peak power after the fatiguing task as compared with before training. We suggest that the relationships between the changes in muscle architecture and neuromuscular fatigue resistance depend on the muscle-tendon unit lengths at which the training is performed.NEW & NOTEWORTHY Eight weeks of isometric training at a long or short muscle-tendon unit length increased and did not change fascicle length, respectively. The "width" of the torque-angle relationship plateau became broader following isometric training at the long length. Despite marked differences in muscle architecture and functional adaptations between the groups, there was only a small-magnitude improvement in neuromuscular fatigue resistance, which was surprisingly negatively related to increased fascicle length in the long length-training group.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Akagi R, Hinks A, Davidson B, Power GA. Differential contributions of fatigue-induced strength loss and slowing of angular velocity to power loss following repeated maximal shortening contractions. Physiol Rep 2020; 8:e14362. [PMID: 32034892 PMCID: PMC7007446 DOI: 10.14814/phy2.14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the relationship between fatigue-induced reductions in isometric torque and isotonic power and to quantify the extent to which the decreases in angular velocity and dynamic torque can explain the power loss immediately following an isotonic fatiguing task and throughout recovery in seven young males and six young females. All measurements were performed with both legs. For dorsiflexion, fatigue-related time-course changes in isometric maximal voluntary contraction (MVC) torque, angular velocity, dynamic torque, and power production following repeated maximal isotonic contractions (load: 20% MVC) were investigated before, immediately after, and 1, 2, 5 and 10 min after a fatiguing task. There were no relationships between the fatigue-related reductions in isometric MVC torque and peak power at any timepoint, suggesting that fatigue-induced reductions in isometric MVC torque does not entirely reflect fatigue-induced changes in dynamic performance. The relative contribution of fatigue-related reduction in dynamic torque on power loss was greater immediately following the task, and lower throughout recovery than the corresponding decrease in angular velocity. Thus, power loss immediately following the task was more strongly related to the decline in dynamic torque; however, this relationship shifted throughout recovery to a greater dependence on slowing of angular velocity for power loss.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Brooke Davidson
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|