1
|
Crotty ED, Furlong LAM, Harrison AJ. Ankle and Plantar Flexor Muscle-Tendon Unit Function in Sprinters: A Narrative Review. Sports Med 2023:10.1007/s40279-023-01967-1. [PMID: 37989833 DOI: 10.1007/s40279-023-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Maximal sprinting in humans requires the contribution of various muscle-tendon units (MTUs) and joints to maximize performance. The plantar flexor MTU and ankle joint are of particular importance due to their role in applying force to the ground. This narrative review examines the contribution of the ankle joint and plantar flexor MTUs across the phases of sprinting (start, acceleration, and maximum velocity), alongside the musculotendinous properties that contribute to improved plantar flexor MTU performance. For the sprint start, the rear leg ankle joint appears to be a particularly important contributor to sprint start performance, alongside the stretch-shortening cycle (SSC) action of the plantar flexor MTU. Comparing elite and sub-elite sprinters revealed that elite sprinters had a higher rate of force development (RFD) and normalized average horizontal block power, which was transferred via the ankle joint to the block. For the acceleration phase, the ankle joint and plantar flexor MTU appear to be the most critical of the major lower limb joints/MTUs. The contribution of the ankle joint to power generation and positive work is minimal during the first stance, but an increased contribution is observed during the second stance, mid-acceleration, and late-acceleration. In terms of muscular contributions, the gastrocnemius and soleus have distinct roles. The soleus acts mainly as a supporter, generating large portions of the upward impulse, whereas the gastrocnemius acts as both an accelerator and a supporter, contributing significantly to propulsive and upward impulses. During maximum velocity sprinting the ankle joint is a net dissipater of energy, potentially due to the greater vertical loading placed on the plantar flexors. However, the ankle joint is critical for energy transfer from proximal joints to ground force application to maintain velocity. In terms of the contribution of musculoskeletal factors to ankle joint and plantar flexor performance, an optimal plantar flexor MTU profile potentially exists, which is possibly a combination of several musculoskeletal factors, alongside factors such as footwear and technique.
Collapse
Affiliation(s)
- Evan D Crotty
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.
| | - Laura-Anne M Furlong
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - Andrew J Harrison
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Yamazaki K, Inoue K, Miyamoto N. Passive and active muscle elasticity of medial gastrocnemius is related to performance in sprinters. Eur J Appl Physiol 2021; 122:447-457. [PMID: 34797438 DOI: 10.1007/s00421-021-04848-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Limited information is available on the association between muscle material properties and sprint performance. We aimed to identify whether and how the elasticity of passive and active muscle of the medial gastrocnemius (MG) is related to sprint performance. METHODS MG shear wave speed was measured under passive and active (20%, 50%, 80% of maximal voluntary contraction [MVC]) conditions, with ultrasound shear wave elastography, in 18 male sprinters. Passive and active ankle joint stiffness was assessed by applying a short-range fast stretch during 0%, 20%, 50%, and 80% MVC of plantar flexion. Additionally, rate of torque development (RTD) during explosive plantar flexion was measured. RESULTS Passive and active MG shear wave speed was negatively correlated with 100-m race time. Passive MG shear wave speed was positively correlated with RTD, and RTD was negatively correlated with 100-m race time. MG shear wave speed at 50% and 80% MVC showed a positive correlation with ankle joint stiffness at the corresponding contraction level, and ankle joint stiffness at 50% and 80% MVC showed negative correlations with 100-m race time. These correlations were significant even after controlling for MVC torque. CONCLUSION Our findings indicate that passive and active muscle elasticity of plantar flexor is important to achieve superior sprint performance. Specifically, high elasticity of passive MG could be related to superior sprint performance through high explosive torque production. In contrast, high elasticity of active MG at moderate-to-high intensity is likely related to high sprint performance through high ankle joint stiffness.
Collapse
Affiliation(s)
- Kazuhiko Yamazaki
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka-gakuendai, Inzai, Chiba, 270-1695, Japan
| | - Kakeru Inoue
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka-gakuendai, Inzai, Chiba, 270-1695, Japan
| | - Naokazu Miyamoto
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka-gakuendai, Inzai, Chiba, 270-1695, Japan.
| |
Collapse
|
3
|
Miyake Y, Suga T, Terada M, Tanaka T, Ueno H, Kusagawa Y, Otsuka M, Nagano A, Isaka T. No Correlation Between Plantar Flexor Muscle Volume and Sprint Performance in Sprinters. Front Sports Act Living 2021; 3:671248. [PMID: 34622204 PMCID: PMC8490797 DOI: 10.3389/fspor.2021.671248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
The plantar flexor torque plays an important role in achieving superior sprint performance in sprinters. Because of the close relationship between joint torque and muscle size, a simple assumption can be made that greater plantar flexor muscles (i.e., triceps surae muscles) are related to better sprint performance. However, previous studies have reported the absence of these relationships. Furthermore, to examine these relationships, only a few studies have calculated the muscle volume (MV) of the plantar flexors. In this study, we hypothesized that the plantar flexor MVs may not be important morphological factors for sprint performance. To test our hypothesis, we examined the relationships between plantar flexor MVs and sprint performance in sprinters. Fifty-two male sprinters and 26 body size-matched male non-sprinters participated in this study. On the basis of the personal best 100 m sprint times [range, 10.21–11.90 (mean ± SD, 11.13 ± 0.42) s] in sprinters, a K-means cluster analysis was applied to divide them into four sprint performance level groups (n = 8, 8, 19, and 17 for each group), which was the optimal number of clusters determined by the silhouette coefficient. The MVs of the gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and soleus (SOL) in participants were measured using magnetic resonance imaging. In addition to absolute MVs, the relative MVs normalized to body mass were used for the analyses. The absolute and relative MVs of the total and individual plantar flexors were significantly greater in sprinters than in non-sprinters (all p < 0.01, d = 0.64–1.39). In contrast, all the plantar flexor MV variables did not differ significantly among the four groups of sprinters (all p > 0.05, η2 = 0.02–0.07). Furthermore, all plantar flexor MV variables did not correlate significantly with personal best 100 m sprint time in sprinters (r = −0.253–0.002, all p > 0.05). These findings suggest that although the plantar flexor muscles are specifically developed in sprinters compared to untrained non-sprinters, the greater plantar flexor MVs in the sprinters may not be important morphological factors for their sprint performance.
Collapse
Affiliation(s)
- Yuto Miyake
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Masafumi Terada
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Takahiro Tanaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Hiromasa Ueno
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuki Kusagawa
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Mitsuo Otsuka
- Faculty of Sport Science, Nippon Sport Science University, Yokohama, Japan
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
4
|
Sarto F, Spörri J, Fitze DP, Quinlan JI, Narici MV, Franchi MV. Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions. Sports Med 2021; 51:1151-1170. [PMID: 33683628 PMCID: PMC8124062 DOI: 10.1007/s40279-021-01436-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Orthopaedics, University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel P Fitze
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Fukutani A, Tsuruhara Y, Miyake Y, Takao K, Ueno H, Otsuka M, Suga T, Terada M, Nagano A, Isaka T. Comparison of the relative muscle volume of triceps surae among sprinters, runners, and untrained participants. Physiol Rep 2020; 8:e14588. [PMID: 33038068 PMCID: PMC7547585 DOI: 10.14814/phy2.14588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 01/15/2023] Open
Abstract
Muscle hypertrophy is considered more prominent in fast‐twitch than in slow‐twitch muscles. This leads to the hypothesis that the relative muscle volume of the medial gastrocnemius (MG) and lateral gastrocnemius (LG) becomes larger than that of the soleus (SOL) in highly trained participants because MG and LG include more fast‐twitch muscles than SOL. Thus, we compared relative muscle volume among highly trained sprinters, long‐distance runners, and untrained participants to examine whether the above hypothesis is correct. Magnetic resonance imaging was used to calculate the muscle volume of MG, LG, and SOL from 126 participants. The total muscle volume of the three muscles and the relative muscle volume of each muscle with respect to the total muscle volume were calculated. The total muscle volume was significantly larger in the sprinters than in the long‐distance runners and untrained participants. The relative muscle volume of MG was significantly larger in the sprinters than in the long‐distance runners and untrained participants and that of SOL was significantly smaller in the sprinters than in the long‐distance runners and untrained participants. These results indicate that the relative muscle volume can vary among participants, possibly due to fiber type‐dependent muscle hypertrophy.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yume Tsuruhara
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuto Miyake
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kenji Takao
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromasa Ueno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya, Tokyo, Japan.,Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Mitsuo Otsuka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masafumi Terada
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|