1
|
Xu M, Zhao J, Zhu L, Ge C, Sun Y, Wang R, Li Y, Dai X, Kuang Q, Hu L, Luo J, Kuang G, Ren Y, Wang B, Tan J, Shi S. Targeting PYK2 with heterobifunctional T6BP helps mitigate MASLD and MASH-HCC progression. J Hepatol 2025; 82:277-300. [PMID: 39260704 DOI: 10.1016/j.jhep.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND & AIMS The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. METHODS Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilized to study fatty liver protection by T6BP. A P-PTC (peptide-proteolysis targeting chimera) degrades PYK2 to block MASH progression. RESULTS We found that T6BP is a novel and critical suppressor of PYK2 that reduces hepatic lipid accumulation, pro-inflammatory factor release, and pro-fibrosis production. Mechanistic evidence suggests that T6BP directly targets PYK2 and prevents its N-terminal FERM domain-triggered dimerization, disrupting downstream PYK2-JNK signaling hyperactivation. Additionally, T6BP favorably recruits CBL, a particular E3 ubiquitin ligase targeting PYK2, to form a complex and degrade PYK2. T6BP (F1), a core fragment of T6BP, directly blocks N-terminal FERM domain-associated dimerization of PYK2, followed by T6BP-recruiting CBL-mediated PYK2 degradation in a typical T6BP-dependent manner when the tiny fragment is specifically expressed using thyroxine binding globulin (TBG) vectors. This inhibits the progression of MASH, MASH-related hepatocellular carcinoma, and metabolic syndrome in dietary rodent models. We devised, and validated in animal models, the first-ever P-PTC based on the core segment of T6BP, as a ligand for the targeted recruitment of CBL, that could be used to target metabolic disorders like MASH. CONCLUSIONS Our study uncovered a previously unknown mechanism, with T6BP identified as a key suppressor of steatosis. This, alongside the discovery of crucial T6BP-based fragments that interrupt PYK2 dimerization hold much promise for the treatment of MASH. IMPACT AND IMPLICATIONS Excessive high-energy diet ingestion is critical in driving steatohepatitis via regulation of hepatocyte non-receptor tyrosine kinases. The mechanisms underlying the regulation of hepatocyte PYK2 in metabolic dysfunction-associated steatohepatitis remain largely unclear. Here, we found that T6BP as a critical fatty liver eliminator could be used for the development of promising therapeutic options. Additionally, vital T6BP-based pharmacon fragments that impede PYK2 dimerization have been found, offering new and effective treatments for advanced fatty liver symptoms and complications.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Junjie Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Ranran Wang
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, PR China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanrong Ren
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China.
| | - Shengbin Shi
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 250117, PR China.
| |
Collapse
|
2
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Fernandois D, Vázquez MJ, Barroso A, Paredes AH, Tena-Sempere M, Cruz G. Multi-Organ Increase in Norepinephrine Levels after Central Leptin Administration and Diet-Induced Obesity. Int J Mol Sci 2023; 24:16909. [PMID: 38069231 PMCID: PMC10706686 DOI: 10.3390/ijms242316909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Autonomic innervation is important to regulate homeostasis in every organ of the body. The sympathetic nervous system controls several organs associated with metabolism and reproduction, including adipose tissue, the liver, and the ovaries. The sympathetic nervous system is controlled within the central nervous system by neurons located in the hypothalamus, which in turn are regulated by hormones like leptin. Leptin action in the hypothalamus leads to increased sympathetic activity in the adipose tissue. In this short report, we propose that leptin action in the brain also controls the sympathetic innervation of other organs like the liver and the ovary. We performed two experiments: We performed an intracerebroventricular (ICV) injection of leptin and measured norepinephrine levels in several organs, and we used a validated model of overnutrition and obesity to evaluate whether an increase in leptin levels coexists with high levels of norepinephrine in the liver and ovaries. Norepinephrine was measured by ELISA in adipose tissue and by HPLC-EC in other tissues. Leptin was measured by ELISA. We found that the ICV injection of leptin increases norepinephrine levels in several organs, including the liver and ovaries. Also, we found that diet-induced obesity leads to an increase in leptin levels while inducing an increase in norepinephrine levels in the liver and ovaries. Finally, since hyperactivity of the sympathetic nervous system is observed both in non-alcoholic fatty liver disease and polycystic ovary syndrome, we think that an increase in norepinephrine levels induced by hyperleptinemia could be involved in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Daniela Fernandois
- Center for Neurobiochemical Studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago 7820436, Chile; (D.F.); (A.H.P.)
| | - María Jesús Vázquez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Cordoba, Spain; (M.J.V.); (A.B.); (M.T.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Alexia Barroso
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Cordoba, Spain; (M.J.V.); (A.B.); (M.T.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Alfonso H. Paredes
- Center for Neurobiochemical Studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago 7820436, Chile; (D.F.); (A.H.P.)
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Cordoba, Spain; (M.J.V.); (A.B.); (M.T.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Gonzalo Cruz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso 2360102, Chile
| |
Collapse
|
4
|
Tang Q, Liu W, Yang X, Tian Y, Chen J, Hu Y, Fu N. ATG5-Mediated Autophagy May Inhibit Pyroptosis to Ameliorate Oleic Acid-Induced Hepatocyte Steatosis. DNA Cell Biol 2022; 41:1038-1052. [PMID: 36473201 DOI: 10.1089/dna.2022.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite activated autophagy ameliorating hepatocyte steatosis and metabolic associated fatty liver disease (MAFLD), mechanisms underlying the beneficial roles of autophagy in hepatic deregulation of lipid metabolism remain undefined. We explored whether autophagy can ameliorate oleic acid (OA)-induced hepatic steatosis by suppressing pyroptosis. Pyroptosis is involved in hepatocyte steatosis induced by OA. In addition, autophagy flux was blocked in OA-treated hepatocytes. Treatment with OA induced lipid accumulation in liver cell line L-02, which was attenuated by rapamycin (Rap), an autophagy agonist, while aggravated by autophagy inhibitor bafilomycin A1 (Baf A1). Inversely, treatment with pyroptotic agonist Nigericin aggravated OA-induced hepatic steatosis, while pyroptosis antagonist disulfiram ameliorated this effect. Mechanistically, treatment with Rap downregulated the expression of pyroptosis-related proteins, including NLRP3, Caspase-1, IL-18, GSDMD expression evoked by OA, thus improving pyroptosis in hepatic steatosis. Significantly, overexpression of ATG5 obviously downregulated cleaved caspase-1 expressions without altering the total caspase1 expressions in hepatic cell steatosis. Taken together, our studies strongly demonstrated that the activation of ATG5 inhibits pyroptosis to improve hepatic steatosis and suggest autophagy activation as a potential therapeutic strategy for pyroptosis-mediated MAFLD.
Collapse
Affiliation(s)
- Qianyu Tang
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wenhui Liu
- Department of Intensive Care Unit, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Xuefeng Yang
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yaying Tian
- Department of Infectious and Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jiacheng Chen
- Department of Intensive Care Unit, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yang Hu
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Nian Fu
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Clinical Research Institute, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|