1
|
Burma JS, Neill MG, Fletcher EKS, Dennett BE, Johnson NE, Javra R, Griffiths JK, Smirl JD. Examining the upper frequency limit of dynamic cerebral autoregulation: Considerations across the cardiac cycle during eucapnia. Exp Physiol 2024. [PMID: 39382938 DOI: 10.1113/ep091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/21/2024] [Indexed: 10/10/2024]
Abstract
There are differences within the literature regarding the upper frequency cut-off point of the dynamic cerebral autoregulation (CA) high-pass filter. The projection pursuit regression approach has demonstrated that the upper frequency limit is ∼0.07 Hz, whereas another approach [transfer function analysis (TFA) phase approaching zero] indicated a theoretical upper frequency limit for the high-pass filter of 0.24 Hz. We investigated how these limits accurately represent the CA upper frequency limit, in addition to extending earlier findings with respect to biological sexes and across the cardiac cycle. Sixteen participants (nine females and seven males) performed repeated squat-stand manoeuvres at frequencies of 0.05, 0.10, 0.15, 0.20 and 0.25 Hz, with insonation of the middle and posterior cerebral arteries. Linear regression modelling with adjustment for sex and order of squat completion was used to compared TFA gain and phase with 0.25 Hz (above the theoretical limit of CA). The upper frequency limit of CA with TFA gain was within the range of 0.05-0.10 Hz, whereas TFA phase was within the range of 0.20-0.25 Hz, and consistent between vessels, between sexes and across the cardiac cycle. Females displayed greater middle cerebral artery gain compared with males (all P < 0.047), and no phase differences were present (all P > 0.072). Although sex-specific differences were present for specific TFA metrics at a given frequency, the upper frequency limit of autoregulation was similar between cerebral conduit vessels, cardiac cycle phase and biological sex. Future work is warranted to determine whether an upper frequency limit exists with respect to hysteresis analyses.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Brooke E Dennett
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - James K Griffiths
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Burma JS, Roy MA, Kennedy CM, Labrecque L, Brassard P, Smirl JD. A systematic review, meta-analysis and meta-regression amalgamating the driven approaches used to quantify dynamic cerebral autoregulation. J Cereb Blood Flow Metab 2024; 44:1271-1297. [PMID: 38635887 PMCID: PMC11342731 DOI: 10.1177/0271678x241235878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024]
Abstract
Numerous driven techniques have been utilized to assess dynamic cerebral autoregulation (dCA) in healthy and clinical populations. The current review aimed to amalgamate this literature and provide recommendations to create greater standardization for future research. The PubMed database was searched with inclusion criteria consisting of original research articles using driven dCA assessments in humans. Risk of bias were completed using Scottish Intercollegiate Guidelines Network and Methodological Index for Non-Randomized Studies. Meta-analyses were conducted for coherence, phase, and gain metrics at 0.05 and 0.10 Hz using deep-breathing, oscillatory lower body negative pressure (OLBNP), sit-to-stand maneuvers, and squat-stand maneuvers. A total of 113 studies were included, with 40 of these incorporating clinical populations. A total of 4126 participants were identified, with younger adults (18-40 years) being the most studied population. The most common techniques were squat-stands (n = 43), deep-breathing (n = 25), OLBNP (n = 20), and sit-to-stands (n = 16). Pooled coherence point estimates were: OLBNP 0.70 (95%CI:0.59-0.82), sit-to-stands 0.87 (95%CI:0.79-0.95), and squat-stands 0.98 (95%CI:0.98-0.99) at 0.05 Hz; and deep-breathing 0.90 (95%CI:0.81-0.99); OLBNP 0.67 (95%CI:0.44-0.90); and squat-stands 0.99 (95%CI:0.99-0.99) at 0.10 Hz. This review summarizes clinical findings, discusses the pros/cons of the 11 unique driven techniques included, and provides recommendations for future investigations into the unique physiological intricacies of dCA.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Burma JS, Griffiths JK, Smirl JD. Validity and reliability of deriving the autoregulatory plateau through projection pursuit regression from driven methods. Physiol Rep 2024; 12:e15919. [PMID: 38262711 PMCID: PMC10805621 DOI: 10.14814/phy2.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
To compare the construct validity and between-day reliability of projection pursuit regression (PPR) from oscillatory lower body negative pressure (OLBNP) and squat-stand maneuvers (SSMs). Nineteen participants completed 5 min of OLBNP and SSMs at driven frequencies of 0.05 and 0.10 Hz across two visits. Autoregulatory plateaus were derived at both point-estimates and across the cardiac cycle. Between-day reliability was assessed with intraclass correlation coefficients (ICCs), Bland-Altman plots with 95% limits of agreement (LOA), coefficient of variation (CoV), and smallest real differences. Construct validity between OLBNP-SSMs were quantified with Bland-Altman plots and Cohen's d. The expected autoregulatory curve with positive rising and negative falling slopes were present in only ~23% of the data. The between-day reliability for the ICCs were poor-to-good with the CoV estimates ranging from ~50% to 70%. The 95% LOA were very wide with an average spread of ~450% for OLBNP and ~350% for SSMs. Plateaus were larger from SSMs compared to OLBNPs (moderate-to-large effect sizes). The cerebral pressure-flow relationship is a complex regulatory process, and the "black-box" nature of this system can make it challenging to quantify. The current data reveals PPR analysis does not always elicit a clear-cut central plateau with distinctive rising/falling slopes.
Collapse
Affiliation(s)
- Joel S. Burma
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| | - James K. Griffiths
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
4
|
Brassard P, Roy MA, Burma JS, Labrecque L, Smirl JD. Quantification of dynamic cerebral autoregulation: welcome to the jungle! Clin Auton Res 2023; 33:791-810. [PMID: 37758907 DOI: 10.1007/s10286-023-00986-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Smail OJ, Clarke DJ, Al‐Alem Q, Wallis W, Barker AR, Smirl JD, Bond B. Resistance exercise acutely elevates dynamic cerebral autoregulation gain. Physiol Rep 2023; 11:e15676. [PMID: 37100594 PMCID: PMC10132945 DOI: 10.14814/phy2.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Dynamic cerebral autoregulation (dCA) describes the regulation of cerebral blood flow (CBF) in response to fluctuations in systemic blood pressure (BP). Heavy resistance exercise is known to induce large transient elevations in BP, which are translated into perturbations of CBF, and may alter dCA in the immediate aftermath. This study aimed to better quantify the time course of any acute alterations in dCA after resistance exercise. Following familiarisation to all procedures, 22 (14 male) healthy young adults (22 ± 2 years) completed an experimental trial and resting control trial, in a counterbalanced order. Repeated squat-stand manoeuvres (SSM) at 0.05 and 0.10 Hz were used to quantify dCA before, and 10 and 45 min after four sets of ten repetition back squats at 70% of one repetition maximum, or time matched seated rest (control). Diastolic, mean and systolic dCA were quantified by transfer function analysis of BP (finger plethysmography) and middle cerebral artery blood velocity (transcranial Doppler ultrasound). Mean gain (p = 0.02; d = 0.36) systolic gain (p = 0.01; d = 0.55), mean normalised gain (p = 0.02; d = 0.28) and systolic normalised gain (p = 0.01; d = 0.67) were significantly elevated above baseline during 0.10 Hz SSM 10-min post resistance exercise. This alteration was not present 45 min post-exercise, and dCA indices were never altered during SSM at 0.05 Hz. dCA metrics were acutely altered 10 min post resistance exercise at the 0.10 Hz frequency only, which indicate changes in the sympathetic regulation of CBF. These alterations recovered 45 min post-exercise.
Collapse
Affiliation(s)
- Oliver J. Smail
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Daniel J. Clarke
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Qais Al‐Alem
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - William Wallis
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Alan R. Barker
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
- Children's Health and Exercise Research CentreUniversity of ExeterExeterUK
| | - Jonathan D. Smirl
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Reach InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
- Cerebrovascular Concussion LabUniversity of CalgaryCalgaryAlbertaCanada
| | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
- Children's Health and Exercise Research CentreUniversity of ExeterExeterUK
| |
Collapse
|
6
|
Burma JS, Rattana S, Johnson NE, Smirl JD. Do mean values tell the full story? Cardiac cycle and biological sex comparisons in temporally derived neurovascular coupling metrics. J Appl Physiol (1985) 2023; 134:426-443. [PMID: 36603050 DOI: 10.1152/japplphysiol.00170.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous reports have noted cerebrovascular regulation differs across the cardiac cycle, with greater regulation occurring within systole. However, this methodological notion has not been meticulously scrutinized during temporally deduced neurovascular coupling (NVC) metrics with additional respect to biological sex. Analyses of 111 healthy individuals (40 females/71 males) were performed where participants engaged in the "Where's Waldo?" paradigm. All NVC parameters were quantified in the posterior and middle cerebral arteries at 310 unique timepoints. Several individuals completed repeat testing which enabled for between-day (3 timepoints) and within-day (7 timepoints) reliability comparisons in 17 and 11 individuals, respectively. One-way analysis of variance compared NVC metrics between diastole, mean, and systole values, as well as differences between biological sexes. Greater absolute cerebral blood velocity (CBv; baseline and peak) and total activation (area under the curve) were noted within systole for both posterior cerebral artery (PCA; P < 0.001) and middle cerebral artery (MCA; P < 0.001) values; however, the relative percent increase in CBv was greater within diastole (P < 0.001). Females had an elevated diastolic and mean CBv and a greater diastolic cerebrovascular conductance (P < 0.050). No sex differences were present for systolic CBv measures and within parameters quantifying the NVC response (area under the curve/relative CBv increase) across the cardiac cycle (P > 0.072). Future investigations seeking to differentiate cerebral regulatory mechanisms between clinical populations may benefit by performing their analyses across the cardiac cycle, as certain pathogenesis may affect one aspect of the cardiac cycle independently. Minimal differences were noted between females and males for metrics characterizing the NVC response across the cardiac cycle.NEW & NOTEWORTHY Neurovascular coupling (NVC) studies commonly assess the mean cerebral hemodynamic response with little consideration for diastole, systole, and biological sex. Greater total activation expressed as the area under the curve was seen within systole compared with mean and diastole. Resting cerebral blood velocity sex differences were more prevalent during diastole when the cerebrovasculature was pressure-passive. Future studies should assess the NVC response across the cardiac cycle as it may help delineate the underlying pathophysiology of various clinical populations.
Collapse
Affiliation(s)
- Joel S Burma
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Selina Rattana
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|