1
|
Wang Y, Zhao M, Liu X, Xu B, Reddy GR, Jovanovic A, Wang Q, Zhu C, Xu H, Bayne EF, Xiang W, Tilley DG, Ge Y, Tate CG, Feil R, Chiu JC, Bers DM, Xiang YK. Carvedilol Activates a Myofilament Signaling Circuitry to Restore Cardiac Contractility in Heart Failure. JACC Basic Transl Sci 2024; 9:982-1001. [PMID: 39297139 PMCID: PMC11405995 DOI: 10.1016/j.jacbts.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 09/21/2024]
Abstract
Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). β-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac β-adrenoceptors (βARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local βAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different βAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by β1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced β1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the β1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with β1AR were observed. Stimulating β1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament β1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meimi Zhao
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Bing Xu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Qingtong Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Heli Xu
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Donald M Bers
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
2
|
Paterek A, Oknińska M, Pilch Z, Sosnowska A, Ramji K, Mackiewicz U, Golab J, Nowis D, Mączewski M. Arginase Inhibition Mitigates Bortezomib-Exacerbated Cardiotoxicity in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15072191. [PMID: 37046852 PMCID: PMC10093116 DOI: 10.3390/cancers15072191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is associated with increased cardiovascular morbidity and mortality, while MM therapies also result in adverse cardiac effects. Endothelial dysfunction and impaired nitric oxide (NO) pathway is their possible mediator. OBJECTIVE Since MM is associated with increased arginase expression, resulting in the consumption of ʟ-arginine, precursor for NO synthesis, our aim was to test if cardiotoxicity mediated by MM and MM therapeutic, bortezomib (a proteasome inhibitor), can be ameliorated by an arginase inhibitor through improved endothelial function. METHODS We used a mouse Vĸ*MYC model of non-light chain MM. Cardiac function was assessed by echocardiography. RESULTS MM resulted in progressive left ventricular (LV) systolic dysfunction, and bortezomib exacerbated this effect, leading to significant impairment of LV performance. An arginase inhibitor, OAT-1746, protected the heart against bortezomib- or MM-induced toxicity but did not completely prevent the effects of the MM+bortezomib combination. MM was associated with improved endothelial function (assessed as NO production) vs. healthy controls, while bortezomib did not affect it. OAT-1746 improved endothelial function only in healthy mice. NO plasma concentration was increased by OAT-1746 but was not affected by MM or bortezomib. CONCLUSIONS Bortezomib exacerbates MM-mediated LV systolic dysfunction in a mouse model of MM, while an arginase inhibitor partially prevents it. Endothelium does not mediate either these adverse or beneficial effects. This suggests that proteasome inhibitors should be used with caution in patients with advanced myeloma, where the summation of cardiotoxicity could be expected. Therapies aimed at the NO pathway, in particular arginase inhibitors, could offer promise in the prevention/treatment of cardiotoxicity in MM.
Collapse
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Kavita Ramji
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| |
Collapse
|