1
|
Gusmao DO, de Sousa LMM, de Sousa ME, Rusew SJR, List EO, Kopchick JJ, Gomes AF, Campideli-Santana AC, Szawka RE, Donato J. Characterization and Regulation of the Neonatal Growth Hormone Surge. Endocrinology 2024; 165:bqae140. [PMID: 39446366 PMCID: PMC11544317 DOI: 10.1210/endocr/bqae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/09/2024]
Abstract
High neonatal growth hormone (GH) secretion has been described in several species. However, the neuroendocrine mechanisms behind this surge remain unknown. Thus, the pattern of postnatal GH secretion was investigated in mice and rats. Blood GH levels were very high on postnatal day (P)1 and progressively decreased until near zero by P17 in C57BL/6 mice without sex differences. This pattern was similar to that observed in rats, except that female rats showed higher GH levels on P1 than males. In comparison, follicle-stimulating hormone exhibited higher secretion in females during the first 3 weeks of life. Hypothalamic Sst mRNA and somatostatin neuroendocrine terminals in the median eminence were higher in P20/P21 mice than in newborns. Knockout mice for GH-releasing hormone (GHRH) receptor showed no GH surge, whereas knockdown mice for the Sst gene displayed increased neonatal GH peak. Leptin deficiency caused only minor effects on early-life GH secretion. GH receptor ablation in neurons or the entire body did not affect neonatal GH secretion, but the subsequent reduction in blood GH levels was attenuated or prevented by these genetic manipulations, respectively. This phenotype was also observed in knockout mice for the insulin-like growth factor-1 (IGF-1) receptor in GHRH neurons. Moreover, glucose-induced hyperglycemia overstimulated GH secretion in neonatal mice. In conclusion, GH surge in the first days of life is not regulated by negative feedback loops. However, neonatal GH secretion requires GHRH receptor, and is modulated by somatostatin and blood glucose levels, suggesting that this surge is controlled by hypothalamic-pituitary communication.
Collapse
MESH Headings
- Animals
- Female
- Growth Hormone/metabolism
- Growth Hormone/blood
- Animals, Newborn
- Male
- Mice, Knockout
- Mice, Inbred C57BL
- Somatostatin/metabolism
- Somatostatin/genetics
- Mice
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Rats
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Leptin/blood
- Leptin/metabolism
- Hypothalamus/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Growth Hormone-Releasing Hormone/metabolism
- Growth Hormone-Releasing Hormone/genetics
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Follicle Stimulating Hormone/blood
- Follicle Stimulating Hormone/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
Collapse
Affiliation(s)
- Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ligia M M de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Stephanie J R Rusew
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Andre F Gomes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Mansano NDS, Vieira HR, Araujo-Lopes R, Szawka RE, Donato J, Frazao R. Fasting Modulates GABAergic Synaptic Transmission to Arcuate Kisspeptin Neurons in Female Mice. Endocrinology 2023; 164:bqad150. [PMID: 37793082 DOI: 10.1210/endocr/bqad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
It is well-established that the hypothalamic-pituitary-gonadal (HPG) axis is suppressed due to negative energy balance. However, less information is available on whether kisspeptin neuronal activity contributes to fasting-induced responses. In the present study, female and male mice were fasted for 24 hours or provided food ad libitum (fed group) to determine whether acute fasting is sufficient to modulate kisspeptin neuronal activity. In female mice, fasting attenuated luteinizing hormone (LH) and prolactin (PRL) serum levels and increased follicle-stimulating hormone levels compared with the fed group. In contrast, fasting did not affect gonadotropin or PRL secretion in male mice. By measuring genes related to LH pulse generation in micropunches obtained from the arcuate nucleus of the hypothalamus (ARH), we observed that fasting reduced Kiss1 mRNA levels in female and male mice. In contrast, Pdyn expression was upregulated only in fasted female mice, whereas no changes in the Tac2 mRNA levels were observed in both sexes. Interestingly, the frequency and amplitude of the GABAergic postsynaptic currents recorded from ARH kisspeptin neurons (ARHKisspeptin) were reduced in 24-hour fasted female mice but not in males. Additionally, neuropeptide Y induced a hyperpolarization in the resting membrane potential of ARHKisspeptin neurons of fed female mice but not in males. Thus, the response of ARHKisspeptin neurons to fasting is sexually dependent with a female bias, associated with changes in gonadotropins and PRL secretion. Our findings suggest that GABAergic transmission to ARHKisspeptin neurons modulates the activity of the HPG axis during situations of negative energy balance.
Collapse
Affiliation(s)
- Naira da Silva Mansano
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Henrique Rodrigues Vieira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Roberta Araujo-Lopes
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael Escorsim Szawka
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP 05508-000, Brazil
| | - Renata Frazao
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Quignon C. Collection and Analysis of Vaginal Smears to Assess Reproductive Stage in Mice. Curr Protoc 2023; 3:e887. [PMID: 37725703 PMCID: PMC10516510 DOI: 10.1002/cpz1.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An increasing number of scientific studies include female mice to assess possible sex differences. As such, for reproducibility by others, it is important to consider hormonal levels, i.e., report the reproductive status of the female mice used. The mouse estrous cycle can be divided in 4 stages, all characterized by a different proportion of 3 cell types found in vaginal secretions. Observation of the mouse vaginal opening and collection of vaginal smears for analysis of cytology can be done in order to determine puberty onset and estrus stage. This protocol describes the characteristics of each estrus stage and details a quick and low-invasive method for collection of vaginal secretions. Examples of estrous cycle stages are included to help the investigator visualize patterns of cyclicity, which can provide important information about the reproductive health of the mice. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Visual assessment of vaginal opening Basic Protocol 2: Collection of vaginal secretion (smears).
Collapse
Affiliation(s)
- Clarisse Quignon
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Gusmao DO, de Sousa ME, Tavares MR, Donato J. Increased GH Secretion and Body Growth in Mice Carrying Ablation of IGF-1 Receptor in GH-releasing Hormone Cells. Endocrinology 2022; 163:6696879. [PMID: 36099517 DOI: 10.1210/endocr/bqac151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) secretion is controlled by short and long negative feedback loops. In this regard, both GH (short-loop feedback) and insulin-like growth factor 1 (IGF-1; long-loop feedback) can target somatotropic cells of the pituitary gland and neuroendocrine hypothalamic neurons to regulate the GH/IGF-1 axis. GH-releasing hormone (GHRH)-expressing neurons play a fundamental role in stimulating pituitary GH secretion. However, it is currently unknown whether IGF-1 action on GHRH-expressing cells is required for the control of the GH/IGF-1/growth axis. In the present study, we investigated the phenotype of male and female mice carrying ablation of IGF-1 receptor (IGF1R) exclusively in GHRH cells. After weaning, both male and female GHRHΔIGF1R mice exhibited increases in body weight, lean body mass, linear growth, and length of long bones (tibia, femur, humerus, and radius). In contrast, the percentage of body fat was similar between control and GHRHΔIGF1R mice. The higher body growth of GHRHΔIGF1R mice can be explained by increases in mean GH levels, GH pulse amplitude, and pulse frequency, calculated from 36 blood samples collected from each animal at 10-minute intervals. GHRHΔIGF1R mice also showed increased hypothalamic Ghrh mRNA levels, pituitary Gh mRNA expression, hepatic Igf1 expression, and serum IGF-1 levels compared with control animals. Furthermore, GHRHΔIGF1R mice displayed significant alterations in the sexually dimorphic hepatic gene expression profile, with a prevailing feminization in most genes analyzed. In conclusion, our findings indicate that GHRH neurons represent a key and necessary site for the long-loop negative feedback that controls the GH/IGF-1 axis and body growth.
Collapse
Affiliation(s)
- Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
Shen X, Liu Y, Li XF, Long H, Wang L, Lyu Q, Kuang Y, O’Byrne KT. Optogenetic stimulation of Kiss1 ARC terminals in the AVPV induces surge-like luteinizing hormone secretion via glutamate release in mice. Front Endocrinol (Lausanne) 2022; 13:1036235. [PMID: 36425470 PMCID: PMC9678915 DOI: 10.3389/fendo.2022.1036235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Kisspeptin neurons are mainly located in the arcuate (Kiss1ARC, vis-à-vis the GnRH pulse generator) and anteroventral periventricular nucleus (Kiss1AVPV, vis-à-vis the GnRH surge generator). Kiss1ARC send fibre projections that connect with Kiss1AVPV somata. However, studies focused on the role of Kiss1ARC neurons in the LH surge are limited, and the role of Kiss1ARC projections to AVPV (Kiss1ARC→AVPV) in the preovulatory LH surge is still unknown. To investigate its function, this study used optogenetics to selectively stimulate Kiss1ARC→AVPV and measured changes in circulating LH levels. Kiss1ARC in Kiss-Cre-tdTomato mice were virally infected to express channelrhodopsin-2 proteins, and optical stimulation was applied selectively via a fibre optic cannula in the AVPV. Sustained 20 Hz optical stimulation of Kiss1ARC→AVPV from 15:30 to 16:30 h on proestrus effectively induced an immediate increase in LH reaching peak surge-like levels of around 8 ng/ml within 10 min, followed by a gradual decline to baseline over about 40 min. Stimulation at 10 Hz resulted in a non-significant increase in LH levels and 5 Hz stimulation had no effect in proestrous animals. The 20 Hz stimulation induced significantly higher circulating LH levels on proestrus compared with diestrus or estrus, which suggested that the effect of terminal stimulation is modulated by the sex steroid milieu. Additionally, intra-AVPV infusion of glutamate antagonists, AP5+CNQX, completely blocked the increase on LH levels induced by Kiss1ARC→AVPV terminal photostimulation in proestrous animals. These results demonstrate for the first time that optical stimulation of Kiss1ARC→AVPV induces an LH surge-like secretion via glutamatergic mechanisms. In conclusion, Kiss1ARC may participate in LH surge generation by glutamate release from terminal projections in the AVPV.
Collapse
Affiliation(s)
- Xi Shen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Feng Li
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Hui Long
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Kevin T. O’Byrne, ; Yanping Kuang,
| | - Kevin T. O’Byrne
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- *Correspondence: Kevin T. O’Byrne, ; Yanping Kuang,
| |
Collapse
|