1
|
Abstract
GABA is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegenerative diseases are a major burden and affect an ever increasing number of humans. The actual therapeutic drugs available are partially effective to slow down the progression of the diseases, but there is a clear need to improve pharmacological treatment thus find alternative drug targets and develop newer pharmaco-treatments. This chapter is dedicated to reviewing the latest evidence about GABAB receptors and their inhibitory mechanisms and pathways involved in the neurodegenerative pathologies.
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health, Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
2
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
3
|
Nardone R, Sebastianelli L, Brigo F, Golaszewski S, Trinka E, Pucks-Faes E, Saltuari L, Versace V. Effects of intrathecal baclofen therapy in subjects with disorders of consciousness: a reappraisal. J Neural Transm (Vienna) 2020; 127:1209-1215. [PMID: 32710152 DOI: 10.1007/s00702-020-02233-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023]
Abstract
Baclofen is a structural analogue of gamma-amino-butyric acid (GABA), which reduces spastic hypertonia of striated muscle due to a mechanism of GABAB-ergic inhibition of mono- and polysynaptic reflexes at the spinal level. There are reports of patients with severe disorders of consciousness that presented a substantial improvement following intrathecal baclofen (ITB) administration for severe spasticity. The neural mechanisms underlying the clinical recovery after ITB have not yet been clarified. Baclofen could modulate sleep-wake cycles that may be dysregulated and thus interfere with alertness and awareness. The diminished proprioceptive and nociceptive sensory inputs may relieve thalamo-cortical neural networks involved in maintaining the consciousness of the self and the world. ITB treatment might also promote the recovery of an impaired GABAergic cortical tone, restoring the balance between excitatory and inhibitory cortical activity. Furthermore, glutamatergic synapses are directly or indirectly modulated by GABAB-ergic receptors. Neurophysiological techniques (such as transcranial magnetic stimulation, electroencephalography, or the combination of both) can be helpful to explore the effects of intrathecal or oral baclofen on the modulation of neural cortical circuits in humans with disorders of consciousness.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy. .,Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria. .,Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria. .,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria.,University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | | | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Viviana Versace
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
4
|
Levinson S, Tran CH, Barry J, Viker B, Levine MS, Vinters HV, Mathern GW, Cepeda C. Paroxysmal Discharges in Tissue Slices From Pediatric Epilepsy Surgery Patients: Critical Role of GABA B Receptors in the Generation of Ictal Activity. Front Cell Neurosci 2020; 14:54. [PMID: 32265658 PMCID: PMC7099654 DOI: 10.3389/fncel.2020.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, we characterized the effects of bath application of the proconvulsant drug 4-aminopyridine (4-AP) alone or in combination with GABAA and/or GABAB receptor antagonists, in cortical dysplasia (CD type I and CD type IIa/b), tuberous sclerosis complex (TSC), and non-CD cortical tissue samples from pediatric epilepsy surgery patients. Whole-cell patch clamp recordings in current and voltage clamp modes were obtained from cortical pyramidal neurons (CPNs), interneurons, and balloon/giant cells. In pyramidal neurons, bath application of 4-AP produced an increase in spontaneous synaptic activity as well as rhythmic membrane oscillations. In current clamp mode, these oscillations were generally depolarizing or biphasic and were accompanied by increased membrane conductance. In interneurons, membrane oscillations were consistently depolarizing and accompanied by bursts of action potentials. In a subset of balloon/giant cells from CD type IIb and TSC cases, respectively, 4-AP induced very low-amplitude, slow membrane oscillations that echoed the rhythmic oscillations from pyramidal neurons and interneurons. Bicuculline reduced the amplitude of membrane oscillations induced by 4-AP, indicating that they were mediated principally by GABAA receptors. 4-AP alone or in combination with bicuculline increased cortical excitability but did not induce seizure-like discharges. Ictal activity was observed in pyramidal neurons and interneurons from CD and TSC cases only when phaclofen, a GABAB receptor antagonist, was added to the 4-AP and bicuculline solution. These results emphasize the critical and permissive role of GABAB receptors in the transition to an ictal state in pediatric CD tissue and highlight the importance of these receptors as a potential therapeutic target in pediatric epilepsy.
Collapse
Affiliation(s)
- Simon Levinson
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Conny H Tran
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joshua Barry
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brett Viker
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Levine
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W Mathern
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Werner FM, Coveñas R. Neural Networks in Generalized Epilepsy and Novel Antiepileptic Drugs. Curr Pharm Des 2020; 25:396-400. [PMID: 30892153 DOI: 10.2174/1381612825666190319121505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In previous works, alterations of neurotransmitters and neuropeptides in the brain areas involved in generalized epilepsy have been reported. OBJECTIVE We reviewed the alterations of these neurotransmitters and neuropeptides in the following brain areas involved in generalized epilepsy: hippocampus, hypothalamus, thalamus and cerebral cortex. In these brain areas, the neural networks are also actualized. The mechanisms of action of newer antiepileptic drugs in the treatment of generalized epilepsy are also discussed. RESULTS Up-dating the neurotransmitter and neuropeptide alterations, we found that hippocampal GABAergic neurons presynaptically inhibit epileptogenic neurons via GABAB receptors. Epilepsy modulating neuropeptides (galanin, neuropeptide Y, dynorphin) are also involved. GABA deficiency, serotonin hyperactivity, dopamine hyperactivity and glutamate excitotoxicity can enhance ictogenesis: neurons containing these neurotransmitters form the main neural circuit. An increased excitability occurs when the alteration of these neurotransmitters is permanent. CONCLUSION In preclinical studies, the GABAB receptor agonist GS 39,783 exerted a good antiepileptic effect. Perampanel, an AMPA receptor antagonist, showed good clinical effects in the treatment of partial-onset seizures and primary generalized tonic-clonic seizures. In this treatment, perampanel can be combined with other antiepileptic drugs. Brivaracetam, which shows a high affinity for the synaptic vesicle 2A, exerted a good efficacy in the treatment of adult focal seizures and secondarily generalized tonic-clonic seizures.
Collapse
Affiliation(s)
- Felix-Martin Werner
- Höhere Berufsfachschule für Altenpflege und Ergotherapie der Euro Akademie, Pößneck, Pößneck, Germany.,Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Leung LS. Long-lasting changes in hippocampal GABA B-receptor mediated inhibition following early-life seizures in kindling-prone but not kindling-resistant rats. Brain Res Bull 2019; 150:231-239. [PMID: 31200097 DOI: 10.1016/j.brainresbull.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
Abstract
The hypotheses that hippocampal GABAB receptor dysfunction is a long-lasting consequence of early-life seizures, and its dependence on genetic background, were tested. Two strains of rats bred to be prone (FAST) or resistant (SLOW) to amygdala kindling were used. On postnatal day (PND) 10, control rats were injected with saline, and seizure rats with kainic acid to induce status epilepticus (SE) for 2 h. A significantly lower dose of kainic acid was found to induce SE in FAST as compared to SLOW rats. Population excitatory postsynaptic potentials (pEPSPs) and population spikes (PSs) were recorded in CA1 of hippocampal slices of adult rats in vitro, following stimulation of stratum radiatum. Input-output relation of the single-pulse pEPSP and PS did not show a significant difference between seizure and control rats, sex, or strain (FAST and SLOW). Paired-pulse PSs were significantly enhanced at 10-50 ms interpulse intervals, in FAST seizure male rats compared to FAST male controls, but not in other groups. In adult FAST but not SLOW rats, significantly lower suppression of pEPSPs at 250-300 ms following heterosynaptic burst stimulation was found in seizure rats compared to control rats; the heterosynaptic suppression of the pEPSP was blocked by selective GABAB receptor antagonist CGP55845A. The results provide evidence that an early-life SE has a long-lasting effect in decreasing GABAB receptor-mediated presynaptic inhibition in the hippocampus, in FAST but not in SLOW rats.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, Medical Science Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
7
|
Partial restoration of physiological UP-state activity by GABA pathway modulation in an acute brain slice model of epilepsy. Neuropharmacology 2019; 148:394-405. [DOI: 10.1016/j.neuropharm.2018.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/21/2018] [Indexed: 01/31/2023]
|
8
|
Svejgaard B, Andreasen M, Nedergaard S. Role of GABA B receptors in proepileptic and antiepileptic effects of an applied electric field in rat hippocampus in vitro. Brain Res 2018; 1710:157-162. [PMID: 30599137 DOI: 10.1016/j.brainres.2018.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying antiepileptic effects of deep brain stimulation (DBS) are complex and poorly understood. Studies on the effects of applied electric fields on epileptic nervous tissue could enable future advances in DBS treatments. Applied electric fields are known to inhibit or enhance epileptic activity in vitro through direct effects on local neurons, but it is unclear whether trans-synaptic effects participate in such actions. The present study investigates, in an epileptic brain slice model, the influence of GABAB receptor activation on excitatory and suppressive effects of a short-duration (10 ms) electric field in rat hippocampus. The results show that perfusion of the GABAB receptor antagonist, CGP 55845 (2 μM), could abolish applied-field induced suppression of orthodromic-stimulus evoked epileptiform afterdischarge activity in the CA1 region. GABAB receptor blockade was associated with an enhanced excitatory (proepileptic) effect of the applied field. However, the suppressive effect, observed in isolation using weak field stimuli, was left unchanged. The G-protein-activated inwardly rectifying K+ channel (GIRK) antagonist, tertiapin (30-50 nM), mimicked the effects of CGP 55845. The results suggest that the applied field activate (elements of) local interneurons to release GABA onto GABAB receptors. The resulting activation of postsynaptic GIRK channels inhibits neuronal activity thereby dampening the direct stimulatory effect of the applied field. The study indicates that local-stimulus induced GABAB receptor activation can serve a protective role under antiepileptic paradigms by preventing electrical stimulation from causing hyperexcitation.
Collapse
Affiliation(s)
| | - Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
9
|
Stover KR, Lim S, Zhou TL, Stafford PM, Chow J, Li H, Sivanenthiran N, Mylvaganam S, Wu C, Weaver DF, Eubanks J, Zhang L. Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice. IBRO Rep 2017; 3:33-44. [PMID: 30135940 PMCID: PMC6084868 DOI: 10.1016/j.ibror.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 11/23/2022] Open
Abstract
The incidence of seizures increases with old age. Stroke, dementia and brain tumors are recognized risk factors for new-onset seizures in the aging populations and the incidence of these conditions also increased with age. Whether aging is associated with higher seizure susceptibility in the absence of the above pathologies remains unclear. We used classic kindling to explore this issue as the kindling model is highly reproducible and allows close monitoring of electrographic and motor seizure activities in individual animals. We kindled male young and aging mice (C57BL/6 strain, 2-3 and 18-22 months of age) via daily hippocampal CA3 stimulation and monitored seizure activity via video and electroencephalographic recordings. The aging mice needed fewer stimuli to evoke stage-5 motor seizures and exhibited longer hippocampal afterdischarges and more frequent hippocampal spikes relative to the young mice, but afterdischarge thresholds and cumulative afterdischarge durations to stage 5 motor seizures were not different between the two age groups. While hippocampal injury and structural alterations at cellular and micro-circuitry levels remain to be examined in the kindled mice, our present observations suggest that susceptibility to hippocampal CA3 kindling seizures is increased with aging in male C57 black mice.
Collapse
Affiliation(s)
- Kurt R. Stover
- Krembil Research Institute, University Health Network, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Canada
| | - Terri-Lin Zhou
- Krembil Research Institute, University Health Network, Canada
| | | | - Jonathan Chow
- Krembil Research Institute, University Health Network, Canada
| | - Haoyuan Li
- Krembil Research Institute, University Health Network, Canada
| | | | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Canada
- Departments of Chemistry, University of Toronto, Canada
- Departments of Medicine, University of Toronto, Canada
| | - James Eubanks
- Krembil Research Institute, University Health Network, Canada
- Departments of Surgery, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Canada
- Departments of Medicine, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| |
Collapse
|
10
|
Zarrabian S, Nasehi M, Farrahizadeh M, Zarrindast MR. The role of CA3 GABA B receptors on anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 with respect to Ca 2+ ions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:515-524. [PMID: 28800869 DOI: 10.1016/j.pnpbp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023]
Abstract
Glutamatergic and GABAergic systems play key roles in the hippocampus and affect the pathogenesis of anxiety- and memory-related processes. Some investigations have assessed the role of balancing the function of these two systems in different areas of the central nervous system (CNS) as an approach to manage the related disorders. We investigated the anxiety and avoidance memory states using the test-retest protocol in the elevated plus maze to understand the role of GABAB receptors (GABABRs) in relation to the NMDA receptor blockade by D-AP5 (an NMDA receptor antagonist). Also, we examined the function of Ca2+ ions by blocking its entrance to the cell using SKF96365 (a Ca2+ channel blocker). The drugs were injected into the CA3 region before the test. Our data showed that D-AP5 induced anxiolytic-like behaviors and impaired the avoidance memory. Injection of baclofen (a GABABR agonist), but not phaclofen (a GABABR antagonist) induced anxiolytic-like behaviors. Neither baclofen nor phaclofen altered avoidance memory-related behaviors. When baclofen was injected before D-AP5, it potentiated the anxiolytic-like behaviors induced by D-AP5, but counteracted its effect on avoidance memory. Phaclofen pretreatment attenuated D-AP5-induced anxiolytic-like behaviors, but potentiated its effect on avoidance memory. The effect of baclofen application before D-AP5 on anxiety and phaclofen application before D-AP5 on avoidance memory at the heist doses were accompanied by a decrease in locomotion. The application of SKF96365 did not alter anxiety-like behaviors but induced avoidance memory impairment. SKF96365 application before the combination of baclofen and D-AP5 counteracted the effects produced by the combination of baclofen and D-AP5 on anxiety and memory states. Our findings showed that the CA3 GABABRs had a critical role in anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 and confirmed the role of Ca2+ ions in the observed results.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Maryam Farrahizadeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Valente P, Farisello P, Valtorta F, Baldelli P, Benfenati F. Impaired GABA B-mediated presynaptic inhibition increases excitatory strength and alters short-term plasticity in synapsin knockout mice. Oncotarget 2017; 8:90061-90076. [PMID: 29163811 PMCID: PMC5685732 DOI: 10.18632/oncotarget.21405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype. These changes are associated with an increased strength of excitatory transmission that has never been mechanistically investigated. Here, we observed that an identical effect in excitatory transmission could be induced in wild-type (WT) Schaffer collateral-CA1 pyramidal cell synapses by blockade of GABAB receptors (GABABRs). The same treatment was virtually ineffective in TKO slices, suggesting that the increased strength of the excitatory transmission results from an impairment of GABAB presynaptic inhibition. Exogenous stimulation of GABABRs in excitatory autaptic neurons, where GABA spillover is negligible, demonstrated that GABABRs were effective in inhibiting excitatory transmission in both WT and TKO neurons. These results demonstrate that the decreased GABA release and spillover, previously observed in TKO hippocampal slices, removes the tonic brake of presynaptic GABABRs on glutamate transmission, making the excitation/inhibition imbalance stronger.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy
| | - Pasqualina Farisello
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Flavia Valtorta
- S. Raffaele Scientific Institute and Vita-Salute University, 20132 Milano, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| |
Collapse
|
12
|
Wu N, Wang F, Jin Z, Zhang Z, Wang LK, Zhang C, Sun T. Effects of GABA B receptors in the insula on recognition memory observed with intellicage. Behav Brain Funct 2017; 13:7. [PMID: 28416021 PMCID: PMC5392977 DOI: 10.1186/s12993-017-0125-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insular function has gradually become a topic of intense study in cognitive research. Recognition memory is a commonly studied type of memory in memory research. GABABR has been shown to be closely related to memory formation. In the present study, we used intellicage, which is a new intelligent behavioural test system, and a bilateral drug microinjection technique to inject into the bilateral insula, to examine the relationship between GABABR and recognition memory. METHODS Male Sprague-Dawley rats were randomly divided into control, Sham, Nacl, baclofen and CGP35348 groups. Different testing procedures were employed using intellicage to detect changes in rat recognition memory. The expression of GABABR (GB1, GB2) in the insula of rats was determined by immunofluorescence and western blotting at the protein level. In addition, the expression of GABABR (GB1, GB2) was detected by RT-PCR at the mRNA level. RESULTS The results of the intellicage test showed that recognition memory was impaired in terms of position learning, punitive learning and punitive reversal learning by using baclofen and CGP35348. In position reversal learning, no significant differences were found in terms of cognitive memory ability between the control groups and the CGP and baclofen groups. Immunofluorescence data showed GABABR (GB1, GB2) expression in the insula, while data from RT-PCR and western blot analysis demonstrated that the relative expression of GB1 and GB2 was significantly increased in the baclofen group compared with the control groups. In the CGP35348 group, the expression of GB1 and GB2 was significantly decreased, but there was no significant difference in GB1 or GB2 expression in the control groups. CONCLUSIONS GABABR expression in the insula plays an important role in the formation of recognition memory in rats.
Collapse
Affiliation(s)
- Nan Wu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhen Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lian-Kun Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China. .,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
13
|
Leung LS, Jin M, Chu L, Ma J. Positive allosteric modulator of GABAB receptor alters behavioral effects but not afterdischarge progression induced by partial hippocampal kindling. Neuropharmacology 2016; 110:154-164. [DOI: 10.1016/j.neuropharm.2016.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/17/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022]
|
14
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C, Kim SH, Jung U. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells. PLoS One 2016; 11:e0147538. [PMID: 26828720 PMCID: PMC4734671 DOI: 10.1371/journal.pone.0147538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, mGluR-1, STAT3 or PI3K. The inhibition of PI3K blocked both p53 signaling and STAT3-mGluR1 signaling but inhibition of p53 did not affect STAT3-mGluR1 signaling in irradiated C17.2 cells. Finally, these results of the IR-induced altered differentiation in C17.2 cells were verified in ex vivo experiments using mouse primary neural stem cells. In conclusion, the results of this study demonstrated that IR is able to trigger the altered neuronal differentiation in undifferentiated neural stem-like cells through PI3K-STAT3-mGluR1 and PI3K-p53 signaling. It is suggested that the IR-induced altered neuronal differentiation may play a role in the brain dysfunction caused by IR.
Collapse
Affiliation(s)
- Hyeon Soo Eom
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Ran Park
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sung Kee Jo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
15
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
16
|
Long Q, Hei Y, Luo Q, Tian Y, Yang J, Li J, Wei L, Liu W. BMSCs transplantation improves cognitive impairment via up-regulation of hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion. Neuroscience 2015; 311:464-73. [DOI: 10.1016/j.neuroscience.2015.10.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
|
17
|
Papatheodoropoulos C. Higher intrinsic network excitability in ventral compared with the dorsal hippocampus is controlled less effectively by GABAB receptors. BMC Neurosci 2015; 16:75. [PMID: 26556486 PMCID: PMC4641374 DOI: 10.1186/s12868-015-0213-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elucidating specializations of the intrinsic neuronal network between the dorsal and the ventral hippocampus is a recently emerging area of research that is expected to help us understand the mechanisms underlying large scale functional diversification along the hippocampus. The aim of this study was to characterize spontaneous network activity between the dorsal and the ventral hippocampus induced under conditions of partial or complete blockade of GABAergic inhibition (i.e. disinhibition). RESULTS Using field recordings from the CA3 and CA1 fields of hippocampal slices from adult rats I found that ventral compared with dorsal hippocampus slices displayed higher propensity for and higher frequency of occurrence of spontaneous field potentials (spfps) at every level of disinhibition. Also NMDA receptor-depended spfps (spfps(-nmda)) occurred with higher probability more frequently and were larger in the ventral compared with the dorsal hippocampus. Importantly, blockade of GABA(B) receptors produced a stronger effect in enhancing the probability of generation of spfps and spfps(-nmda) in the dorsal compared with the ventral hippocampal slices and increased spfps(-nmda) only in dorsal slices. CONCLUSION These results demonstrate a higher intrinsic neuronal excitability of the ventral compared with the dorsal local circuitry with the considerable contribution of NMDA receptors. Furthermore, the GABA(B) receptors control the total and the NMDA receptor-dependent excitation much less effectively in the ventral part of the hippocampus. It is proposed that NMDA and GABA(B) receptors significantly contribute to differentiate local network dynamics between the dorsal and the ventral hippocampus with important implications in the information processing performed along the long hippocampal axis.
Collapse
Affiliation(s)
- Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, Rion, 26504, Patras, Greece.
| |
Collapse
|
18
|
Effects of neonatal hypoxic-ischemic episodes on late seizure outcomes in C57 black mice. Epilepsy Res 2015; 111:142-9. [PMID: 25769378 DOI: 10.1016/j.eplepsyres.2015.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
We examined brain injury and seizures in adult C57 black mice (C57/BL6) that underwent neonatal hypoxic-ischemic (HI) episodes. Mouse pups of 7 days-old underwent a ligation of the right common carotid artery and a subsequent hypoxic challenge (8% O2 for 45min). Post-HI mice were implanted with intracranial electrodes at 2-3 months of age, subjected to behavioral/EEG recordings and hippocampal electrical stimulation in next several months and then euthanized for brain histological assessments at ages of 11-12 months. Histological assessment revealed ipsilateral brain infarctions in 9 post-HI animals. Evident motor seizures were found to occur in only 2 animals with histologically identified cystic infarctions but not in the 21 post-HI animals with or without infarctions. In response to the hippocampal stimulation, post-HI animals were less prone than sham controls to evoked motor seizures. We thus suggest that adult C57 black mice may have low propensity of developing epileptic seizures following the neonatal HI episode. Our present observations may be relevant to future investigation of post-HI epileptogenesis in mouse models.
Collapse
|