1
|
Aparo A, Bonnici V, Avesani S, Cascione L, Giugno R. DiGAS: Differential gene allele spectrum as a descriptor in genetic studies. Comput Biol Med 2024; 179:108924. [PMID: 39067286 DOI: 10.1016/j.compbiomed.2024.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Diagnosing individuals with complex genetic diseases is a challenging task. Computational methodologies exploit information at the genotype level by taking into account single nucleotide polymorphisms (SNPs) leveraging the results of genome-wide association studies analysis to assign a statistical significance to each SNP. Recent methodologies extend such an approach by aggregating SNP significance at the genetic level to identify genes that are related to the condition under study. However, such methodologies still suffer from the initial SNP analysis limitations. Here, we present DiGAS, a tool for diagnosing genetic conditions by computing significance, by means of SNP information, directly at the complex level of genetic regions. Such an approach is based on a generalized notion of allele spectrum, which evaluates the complete genetic alterations of the SNP set belonging to a genetic region at the population level. The statistical significance of a region is then evaluated through a differential allele spectrum analysis between the conditions of individuals belonging to the population. Tests, performed on well-established datasets regarding Alzheimer's disease, show that DiGAS outperforms the state of the art in distinguishing between sick and healthy subjects.
Collapse
Affiliation(s)
- Antonino Aparo
- University of Verona, Strada le Grazie, 15, Verona, 37134, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Ple. L.A. Scuro 10, Verona, 37134, Italy
| | - Vincenzo Bonnici
- University of Parma, Parco Area delle Scienze, 53/A, Parma, 43124, Italy
| | - Simone Avesani
- University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Via Francesco Chiesa 5, Bellinzona, 6500, Switzerland
| | - Rosalba Giugno
- University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
| |
Collapse
|
2
|
Head ST, Leslie EJ, Cutler DJ, Epstein MP. POIROT: a powerful test for parent-of-origin effects in unrelated samples leveraging multiple phenotypes. Bioinformatics 2023; 39:btad199. [PMID: 37067493 PMCID: PMC10148680 DOI: 10.1093/bioinformatics/btad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023] Open
Abstract
MOTIVATION There is widespread interest in identifying genetic variants that exhibit parent-of-origin effects (POEs) wherein the effect of an allele on phenotype expression depends on its parental origin. POEs can arise from different phenomena including genomic imprinting and have been documented for many complex traits. Traditional tests for POEs require family data to determine parental origins of transmitted alleles. As most genome-wide association studies (GWAS) sample unrelated individuals (where allelic parental origin is unknown), the study of POEs in such datasets requires sophisticated statistical methods that exploit genetic patterns we anticipate observing when POEs exist. We propose a method to improve discovery of POE variants in large-scale GWAS samples that leverages potential pleiotropy among multiple correlated traits often collected in such studies. Our method compares the phenotypic covariance matrix of heterozygotes to homozygotes based on a Robust Omnibus Test. We refer to our method as the Parent of Origin Inference using Robust Omnibus Test (POIROT) of multiple quantitative traits. RESULTS Through simulation studies, we compared POIROT to a competing univariate variance-based method which considers separate analysis of each phenotype. We observed POIROT to be well-calibrated with improved power to detect POEs compared to univariate methods. POIROT is robust to non-normality of phenotypes and can adjust for population stratification and other confounders. Finally, we applied POIROT to GWAS data from the UK Biobank using BMI and two cholesterol phenotypes. We identified 338 genome-wide significant loci for follow-up investigation. AVAILABILITY AND IMPLEMENTATION The code for this method is available at https://github.com/staylorhead/POIROT-POE.
Collapse
Affiliation(s)
- S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
3
|
Fisher LAB, Schöck F. The unexpected versatility of ALP/Enigma family proteins. Front Cell Dev Biol 2022; 10:963608. [PMID: 36531944 PMCID: PMC9751615 DOI: 10.3389/fcell.2022.963608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
One of the most intriguing features of multicellular animals is their ability to move. On a cellular level, this is accomplished by the rearrangement and reorganization of the cytoskeleton, a dynamic network of filamentous proteins which provides stability and structure in a stationary context, but also facilitates directed movement by contracting. The ALP/Enigma family proteins are a diverse group of docking proteins found in numerous cellular milieus and facilitate these processes among others. In vertebrates, they are characterized by having a PDZ domain in combination with one or three LIM domains. The family is comprised of CLP-36 (PDLIM1), Mystique (PDLIM2), ALP (PDLIM3), RIL (PDLIM4), ENH (PDLIM5), ZASP (PDLIM6), and Enigma (PDLIM7). In this review, we will outline the evolution and function of their protein domains which confers their versatility. Additionally, we highlight their role in different cellular environments, focusing specifically on recent advances in muscle research using Drosophila as a model organism. Finally, we show the relevance of this protein family to human myopathies and the development of muscle-related diseases.
Collapse
|
4
|
Patel J, Bircan E, Tang X, Orloff M, Hobbs CA, Browne ML, Botto LD, Finnell RH, Jenkins MM, Olshan A, Romitti PA, Shaw GM, Werler MM, Li J, Nembhard WN. Paternal genetic variants and risk of obstructive heart defects: A parent-of-origin approach. PLoS Genet 2021; 17:e1009413. [PMID: 33684136 PMCID: PMC7971842 DOI: 10.1371/journal.pgen.1009413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Previous research on risk factors for obstructive heart defects (OHDs) focused on maternal and infant genetic variants, prenatal environmental exposures, and their potential interaction effects. Less is known about the role of paternal genetic variants or environmental exposures and risk of OHDs. We examined parent-of-origin effects in transmission of alleles in the folate, homocysteine, or transsulfuration pathway genes on OHD occurrence in offspring. We used data on 569 families of liveborn infants with OHDs born between October 1997 and August 2008 from the National Birth Defects Prevention Study to conduct a family-based case-only study. Maternal, paternal, and infant DNA were genotyped using an Illumina Golden Gate custom single nucleotide polymorphism (SNP) panel. Relative risks (RR), 95% confidence interval (CI), and likelihood ratio tests from log-linear models were used to estimate the parent-of-origin effect of 877 SNPs in 60 candidate genes in the folate, homocysteine, and transsulfuration pathways on the risk of OHDs. Bonferroni correction was applied for multiple testing. We identified 3 SNPs in the transsulfuration pathway and 1 SNP in the folate pathway that were statistically significant after Bonferroni correction. Among infants who inherited paternally-derived copies of the G allele for rs6812588 in the RFC1 gene, the G allele for rs1762430 in the MGMT gene, and the A allele for rs9296695 and rs4712023 in the GSTA3 gene, RRs for OHD were 0.11 (95% CI: 0.04, 0.29, P = 9.16x10-7), 0.30 (95% CI: 0.17, 0.53, P = 9.80x10-6), 0.34 (95% CI: 0.20, 0.57, P = 2.28x10-5), and 0.34 (95% CI: 0.20, 0.58, P = 3.77x10-5), respectively, compared to infants who inherited maternally-derived copies of the same alleles. We observed statistically significant decreased risk of OHDs among infants who inherited paternal gene variants involved in folate and transsulfuration pathways.
Collapse
Affiliation(s)
- Jenil Patel
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Dallas, TX, United States of America
| | - Emine Bircan
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Xinyu Tang
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR, United States of America
| | - Mohammed Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States of America
| | - Marilyn L. Browne
- Birth Defects Research Section, New York State Department of Health, Albany, NY, United States of America
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, United States of America
| | - Lorenzo D. Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States of America
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Andrew Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, United States of America
| | - Gary M. Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Martha M. Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Jingyun Li
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR, United States of America
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | | |
Collapse
|
5
|
Senaldi L, Smith-Raska M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin Epigenetics 2020; 12:136. [PMID: 32917273 PMCID: PMC7488552 DOI: 10.1186/s13148-020-00929-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly apparent that certain phenotypes are inherited across generations independent of the information contained in the DNA sequence, by factors in germ cells that remain largely uncharacterized. As evidence for germline non-genetic inheritance of phenotypes and diseases continues to grow in model organisms, there are fewer reports of this phenomenon in humans, due to a variety of complications in evaluating this mechanism of inheritance in humans. This review summarizes the evidence for germline-based non-genetic inheritance in humans, as well as the significant challenges and important caveats that must be considered when evaluating this process in human populations. Most reports of this process evaluate the association of a lifetime exposure in ancestors with changes in DNA methylation or small RNA expression in germ cells, as well as the association between ancestral experiences and the inheritance of a phenotype in descendants, down to great-grandchildren in some cases. Collectively, these studies provide evidence that phenotypes can be inherited in a DNA-independent manner; the extent to which this process contributes to disease development, as well as the cellular and molecular regulation of this process, remain largely undefined.
Collapse
Affiliation(s)
- Liana Senaldi
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Matthew Smith-Raska
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA. .,Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Dean B, Parkin GM, Gibbons AS. Associations between catechol-O-methyltransferase (COMT) genotypes at rs4818 and rs4680 and gene expression in human dorsolateral prefrontal cortex. Exp Brain Res 2020; 238:477-486. [DOI: 10.1007/s00221-020-05730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
|
7
|
Zayats T, Neale BM. Recent advances in understanding of attention deficit hyperactivity disorder (ADHD): how genetics are shaping our conceptualization of this disorder. F1000Res 2019. [PMID: 31824658 DOI: 10.12688/f1000research.18959.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a clinically defined disorder, and inattention and hyperactivity/impulsivity are its main symptom domains. The presentation, lifelong continuation and treatment response of ADHD symptoms, however, is highly heterogeneous. To better define, diagnose, treat and prevent ADHD, it is essential that we understand the biological processes underlying all of these elements. In this review, given the high heritability of ADHD, we discuss how and why genetics can foster such progress. We examine what genetics have taught us so far with regard to ADHD definition, classification, clinical presentation, diagnosis and treatment. Finally, we offer a prospect of what genetic studies on ADHD may bring in the future.
Collapse
Affiliation(s)
- Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
8
|
Zayats T, Neale BM. Recent advances in understanding of attention deficit hyperactivity disorder (ADHD): how genetics are shaping our conceptualization of this disorder. F1000Res 2019; 8. [PMID: 31824658 PMCID: PMC6896240 DOI: 10.12688/f1000research.18959.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a clinically defined disorder, and inattention and hyperactivity/impulsivity are its main symptom domains. The presentation, lifelong continuation and treatment response of ADHD symptoms, however, is highly heterogeneous. To better define, diagnose, treat and prevent ADHD, it is essential that we understand the biological processes underlying all of these elements. In this review, given the high heritability of ADHD, we discuss how and why genetics can foster such progress. We examine what genetics have taught us so far with regard to ADHD definition, classification, clinical presentation, diagnosis and treatment. Finally, we offer a prospect of what genetic studies on ADHD may bring in the future.
Collapse
Affiliation(s)
- Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
9
|
Nembhard WN, Tang X, Li J, MacLeod SL, Levy J, Schaefer GB, Hobbs CA. A parent-of-origin analysis of paternal genetic variants and increased risk of conotruncal heart defects. Am J Med Genet A 2018; 176:609-617. [PMID: 29399948 DOI: 10.1002/ajmg.a.38611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
The association between conotruncal heart defects (CTHDs) and maternal genetic and environmental exposures is well studied. However, little is known about paternal genetic or environmental exposures and risk of CTHDs. We assessed the effect of paternal genetic variants in the folate, homocysteine, and transsulfuration pathways on risk of CTHDs in offspring. We utilized National Birth Defects Prevention Study data to conduct a family-based case only study using 616 live-born infants with CTHDs, born October 1997-August 2008. Maternal, paternal and infant DNA was genotyped using an Illumina® Golden Gate custom single nucleotide polymorphism (SNP) panel. Relative risks (RR) and 95% confidence intervals (CI) from log-linear models determined parent of origin effects for 921 SNPs in 60 candidate genes involved in the folate, homocysteine, and transsulfuration pathways on risk of CTHDs. The risk of CTHD among children who inherited a paternally derived copy of the A allele on GLRX (rs17085159) or the T allele of GLRX (rs12109442) was 0.23 (95%CI: 0.12, 0.42; p = 1.09 × 10-6 ) and 0.27 (95%CI: 0.14, 0.50; p = 2.06 × 10-5 ) times the risk among children who inherited a maternal copy of the same allele. The paternally inherited copy of the GSR (rs7818511) A allele had a 0.31 (95%CI: 0.18, 0.53; p = 9.94 × 10-6 ] risk of CTHD compared to children with the maternal copy of the same allele. The risk of CTHD is less influenced by variants in paternal genes involved in the folate, homocysteine, or transsulfuration pathways than variants in maternal genes in those pathways.
Collapse
Affiliation(s)
- Wendy N Nembhard
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xinyu Tang
- Division of Biostatistics, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Jingyun Li
- Division of Biostatistics, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Stewart L MacLeod
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Joseph Levy
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Gerald B Schaefer
- Division of Genetics and Metabolism, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Charlotte A Hobbs
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas
| | | |
Collapse
|
10
|
Shilpi A, Bi Y, Jung S, Patra SK, Davuluri RV. Identification of Genetic and Epigenetic Variants Associated with Breast Cancer Prognosis by Integrative Bioinformatics Analysis. Cancer Inform 2017; 16:1-13. [PMID: 28096648 PMCID: PMC5224237 DOI: 10.4137/cin.s39783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Breast cancer being a multifaceted disease constitutes a wide spectrum of histological and molecular variability in tumors. However, the task for the identification of these variances is complicated by the interplay between inherited genetic and epigenetic aberrations. Therefore, this study provides an extrapolate outlook to the sinister partnership between DNA methylation and single-nucleotide polymorphisms (SNPs) in relevance to the identification of prognostic markers in breast cancer. The effect of these SNPs on methylation is defined as methylation quantitative trait loci (meQTL). MATERIALS AND METHODS We developed a novel method to identify prognostic gene signatures for breast cancer by integrating genomic and epigenomic data. This is based on the hypothesis that multiple sources of evidence pointing to the same gene or pathway are likely to lead to reduced false positives. We also apply random resampling to reduce overfitting noise by dividing samples into training and testing data sets. Specifically, the common samples between Illumina 450 DNA methylation, Affymetrix SNP array, and clinical data sets obtained from the Cancer Genome Atlas (TCGA) for breast invasive carcinoma (BRCA) were randomly divided into training and test models. An intensive statistical analysis based on log-rank test and Cox proportional hazard model has established a significant association between differential methylation and the stratification of breast cancer patients into high- and low-risk groups, respectively. RESULTS The comprehensive assessment based on the conjoint effect of CpG–SNP pair has guided in delaminating the breast cancer patients into the high- and low-risk groups. In particular, the most significant association was found with respect to cg05370838–rs2230576, cg00956490–rs940453, and cg11340537–rs2640785 CpG–SNP pairs. These CpG–SNP pairs were strongly associated with differential expression of ADAM8, CREB5, and EXPH5 genes, respectively. Besides, the exclusive effect of SNPs such as rs10101376, rs140679, and rs1538146 also hold significant prognostic determinant. CONCLUSIONS Thus, the analysis based on DNA methylation and SNPs have resulted in the identification of novel susceptible loci that hold prognostic relevance in breast cancer.
Collapse
Affiliation(s)
- Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Yingtao Bi
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Segun Jung
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Ramana V Davuluri
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Nakka P, Raphael BJ, Ramachandran S. Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases. Genetics 2016; 204:783-798. [PMID: 27489002 PMCID: PMC5068862 DOI: 10.1534/genetics.116.188391] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores. PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is the first application of HotNet2 to common variation. In ulcerative colitis and waist-hip ratio, we discover networks that include genes previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks. We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs.
Collapse
Affiliation(s)
- Priyanka Nakka
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912
| | - Benjamin J Raphael
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912 Department of Computer Science, Brown University, Providence, Rhode Island 02912
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
12
|
Zayats T, Johansson S, Haavik J. Expanding the toolbox of ADHD genetics. How can we make sense of parent of origin effects in ADHD and related behavioral phenotypes? Behav Brain Funct 2015; 11:33. [PMID: 26475699 PMCID: PMC4609130 DOI: 10.1186/s12993-015-0078-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association (GWA) studies have shown that many different genetic variants cumulatively contribute to the risk of psychiatric disorders. It has also been demonstrated that various parent-of-origin effects (POE) may differentially influence the risk of these disorders. Together, these observations have provided important new possibilities to uncover the genetic underpinnings of such complex phenotypes. As POE so far have received little attention in neuropsychiatric disorders, there is still much progress to be made. Here, we mainly focus on the new and emerging role of POE in attention-deficit hyperactivity disorder (ADHD). We review the current evidence that POE play an imperative role in vulnerability to ADHD and related disorders. We also discuss how POE can be assessed using statistical genetics tools, expanding the resources of modern psychiatric genetics. We propose that better comprehension and inspection of POE may offer new insight into the molecular basis of ADHD and related phenotypes, as well as the potential for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Tetyana Zayats
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Stefan Johansson
- Department of Clinical Science, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Jan Haavik
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
13
|
7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nat Genet 2014; 47:132-41. [PMID: 25501393 DOI: 10.1038/ng.3169] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Cell reprogramming promises to make characterization of the impact of human genetic variation on health and disease experimentally tractable by enabling the bridging of genotypes to phenotypes in developmentally relevant human cell lineages. Here we apply this paradigm to two disorders caused by symmetrical copy number variations of 7q11.23, which display a striking combination of shared and symmetrically opposite phenotypes--Williams-Beuren syndrome and 7q-microduplication syndrome. Through analysis of transgene-free patient-derived induced pluripotent stem cells and their differentiated derivatives, we find that 7q11.23 dosage imbalance disrupts transcriptional circuits in disease-relevant pathways beginning in the pluripotent state. These alterations are then selectively amplified upon differentiation of the pluripotent cells into disease-relevant lineages. A considerable proportion of this transcriptional dysregulation is specifically caused by dosage imbalances in GTF2I, which encodes a key transcription factor at 7q11.23 that is associated with the LSD1 repressive chromatin complex and silences its dosage-sensitive targets.
Collapse
|
14
|
Connolly S, Heron EA. Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide association data with binary disease traits. Brief Bioinform 2014; 16:429-48. [PMID: 24903222 DOI: 10.1093/bib/bbu017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
The detection of parent-of-origin effects aims to identify whether the functionality of alleles, and in turn associated phenotypic traits, depends on the parental origin of the alleles. Different parent-of-origin effects have been identified through a variety of mechanisms and a number of statistical methodologies for their detection have been proposed, in particular for genome-wide association studies (GWAS). GWAS have had limited success in explaining the heritability of many complex disorders and traits, but successful identification of parent-of-origin effects using trio (mother, father and offspring) GWAS may help shed light on this missing heritability. However, it is important to choose the most appropriate parent-of-origin test or methodology, given knowledge of the phenotype, amount of available data and the type of parent-of-origin effect(s) being considered. This review brings together the parent-of-origin detection methodologies available, comparing them in terms of power and type I error for a number of different simulated data scenarios, and finally offering guidance as to the most appropriate choice for the different scenarios.
Collapse
|
15
|
Nudel R, Simpson NH, Baird G, O'Hare A, Conti-Ramsden G, Bolton PF, Hennessy ER, Ring SM, Davey Smith G, Francks C, Paracchini S, Monaco AP, Fisher SE, Newbury DF. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. GENES BRAIN AND BEHAVIOR 2014; 13:418-29. [PMID: 24571439 PMCID: PMC4114547 DOI: 10.1111/gbb.12127] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/30/2014] [Accepted: 02/22/2014] [Indexed: 12/19/2022]
Abstract
Specific language impairment (SLI) is a neurodevelopmental disorder that affects linguistic abilities when development is otherwise normal. We report the results of a genome-wide association study of SLI which included parent-of-origin effects and child genotype effects and used 278 families of language-impaired children. The child genotype effects analysis did not identify significant associations. We found genome-wide significant paternal parent-of-origin effects on chromosome 14q12 (P = 3.74 × 10−8) and suggestive maternal parent-of-origin effects on chromosome 5p13 (P = 1.16 × 10−7). A subsequent targeted association of six single-nucleotide-polymorphisms (SNPs) on chromosome 5 in 313 language-impaired individuals and their mothers from the ALSPAC cohort replicated the maternal effects, albeit in the opposite direction (P = 0.001); as fathers’ genotypes were not available in the ALSPAC study, the replication analysis did not include paternal parent-of-origin effects. The paternally-associated SNP on chromosome 14 yields a non-synonymous coding change within the NOP9 gene. This gene encodes an RNA-binding protein that has been reported to be significantly dysregulated in individuals with schizophrenia. The region of maternal association on chromosome 5 falls between the PTGER4 and DAB2 genes, in a region previously implicated in autism and ADHD. The top SNP in this association locus is a potential expression QTL of ARHGEF19 (also called WGEF) on chromosome 1. Members of this protein family have been implicated in intellectual disability. In summary, this study implicates parent-of-origin effects in language impairment, and adds an interesting new dimension to the emerging picture of shared genetic etiology across various neurodevelopmental disorders.
Collapse
Affiliation(s)
- R Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Margari F, Craig F, Petruzzelli MG, Lamanna A, Matera E, Margari L. Parents psychopathology of children with Attention Deficit Hyperactivity Disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:1036-1043. [PMID: 23291521 DOI: 10.1016/j.ridd.2012.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a disorder with extremely complex etiology, not yet well defined but certainly multi-factorial. This study investigated the possible etiopathogenetic role of ADHD symptoms and psychopathology disorders in parents of children with ADHD. We present a case-control study of parents of 50 children affected by ADHD and of 45 healthy children, matched to age and gender. Parents of ADHD children reported higher levels of ADHD symptoms, depressive disorders and Depressive Personality Disorders than parents of healthy children. Mothers displayed greater presence of depression, while fathers showed problems concerning alcohol use. The occurrence of ADHD symptoms, psychopathology and personality disorders in parents highlights the importance to integrate the treatment programs in the ADHD children with the screening and treatment for psychopathological symptoms of the parents.
Collapse
Affiliation(s)
- Francesco Margari
- Department of Neuroscience and Sense Organs, University of Aldo Moro Bari, Piazza Giulio Cesare 1, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Ramachandran U, Manavalan A, Sundaramurthi H, Sze SK, Feng ZW, Hu JM, Heese K. Tianma modulates proteins with various neuro-regenerative modalities in differentiated human neuronal SH-SY5Y cells. Neurochem Int 2012; 60:827-36. [PMID: 22710396 DOI: 10.1016/j.neuint.2012.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/29/2012] [Accepted: 03/19/2012] [Indexed: 12/15/2022]
Abstract
Tianma (Rhizoma gastrodiae) is the dried rhizome of the plant Gastrodia elata Blume (Orchidaceae family). As a medicinal herb in traditional Chinese medicine (TCM) its functions are to control convulsions, pain, headache, dizziness, vertigo, seizure, epilepsy and others. In addition, tianma is frequently used for the treatment of neurodegenerative disorders though the mechanism of action is widely unknown. Accordingly, this study was designed to examine the effects of tianma on the proteome metabolism in differentiated human neuronal SH-SY5Y cells to explore its specific effects on neuronal signaling pathways. Using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach, we identified 2390 modulated proteins, out of which 406 were found to be altered by tianma in differentiated human neuronal SH-SY5Y cells. Based on the observed data, we hypothesize that tianma promotes neuro-regenerative signaling cascades by controlling chaperone/proteasomal degradation pathways (e.g. CALR, FKBP3/4, HSP70/90) and mobilizing neuro-protective genes (such as AIP5) as well as modulating other proteins (RTN1/4, NCAM, PACSIN2, and PDLIM1/5) with various regenerative modalities and capacities related to neuro-synaptic plasticity.
Collapse
|