1
|
Steardo L, D'Angelo M, Monaco F, Di Stefano V, Steardo L. Decoding neural circuit dysregulation in bipolar disorder: Toward an advanced paradigm for multidimensional cognitive, emotional, and psychomotor treatment. Neurosci Biobehav Rev 2025; 169:106030. [PMID: 39894420 DOI: 10.1016/j.neubiorev.2025.106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Bipolar disorder (BD) is characterized by a complex constellation of emotional, cognitive, and psychomotor disturbances, each deeply intertwined with underlying dysfunctions in large-scale brain networks and neurotransmitter systems. This manuscript integrates recent advances in neuroimaging, neuromodulation, and pharmacological research to provide a comprehensive view of BD's pathophysiology, emphasizing the role of network-specific dysfunctions and their clinical manifestations. We explore how dysregulation within the fronto-limbic network, particularly involving the prefrontal cortex (PFC) and amygdala, underpins the emotional instability that defines both manic and depressive episodes. Additionally, impairments in the central executive network (CEN) and default mode network (DMN) are linked to cognitive deficits, with hyperactivity in the DMN driving rumination and cognitive inflexibility, while CEN underactivity contributes to attentional lapses and impaired executive function. Psychomotor symptoms, which oscillate between hyperactivity in mania and retardation in depression, are closely associated with imbalances in neurotransmitter systems, particularly dopamine and serotonin, within the basal ganglia-thalamo-cortical motor pathway. Recent studies indicate that these psychomotor disturbances are further exacerbated by disruptions in network connectivity, leading to impairments in both motor control and emotional regulation. Emerging therapeutic strategies are discussed, with a focus on neuromodulation techniques such as transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS), which show promise in restoring balance within these critical networks. Furthermore, pharmacological interventions that modulate synaptic functioning and neuronal plasticity offer potential for addressing both the emotional and motor symptoms of BD. This manuscript underscores the need for an integrative treatment approach that simultaneously targets neural circuits and neurotransmitter systems to address the full spectrum of symptoms in BD. Drawing on recent advancements in neurobiological models and therapeutic frameworks, this proposal outlines a pathway for the development of precision-tailored interventions. These approaches are designed to optimize cognitive, emotional, and psychomotor outcomes, ultimately striving to elevate the quality of life for individuals living with bipolar disorder (BD), while remaining firmly grounded in the latest empirical evidence and theoretical insights.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy
| | - Martina D'Angelo
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy.
| | - Francesco Monaco
- Department of Mental Health, Azienda Sanitaria Locale Salerno, Salerno, Italy; European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy.
| | - Valeria Di Stefano
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy.
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome 00185, Italy; Department of Clinical Psychology, University Giustino Fortunato, Benevento 82100, Italy.
| |
Collapse
|
2
|
Mogensen MB, Macoveanu J, Knudsen GM, Ott CV, Miskowiak KW. Influence of pre-treatment structural brain measures on effects of action-based cognitive remediation on executive function in partially or fully remitted patients with bipolar disorder. Eur Neuropsychopharmacol 2022; 56:50-59. [PMID: 34933219 DOI: 10.1016/j.euroneuro.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Cognitive impairment is an emerging treatment target in patients with bipolar disorder (BD) but so far, no evidence-based treatment options are available. Recent studies indicate promising effects of Cognitive Remediation (CR) interventions, but it is unclear who responds most to these interventions. This report aimed to investigate whether pre-treatment dorsal prefrontal cortex (dPFC) thickness predicts improvement of executive function in response to Action-Based Cognitive Remediation (ABCR) in patients with BD. Complete baseline magnetic resonance imaging (MRI) data were available from 45 partially or fully remitted patients with BD from our randomized controlled ABCR trial (ABCR: n = 25, control group: n = 20). We performed cortical reconstruction and volumetric segmentation using FreeSurfer. Multiple linear regression analysis was conducted to assess the influence of dPFC thickness on ABCR-related executive function improvement, reflected by change in the One Touch Stocking of Cambridge performance from baseline to post-treatment. We also conducted whole brain vertex wise analysis for exploratory purposes. Groups were well-matched for demographic and clinical variables. Less pre-treatment dPFC thickness was associated with greater effect of ABCR on executive function (p = 0.02). Further, whole-brain vertex analysis revealed an association between smaller pre-treatment superior temporal gyrus volume and greater ABCR-related executive function improvement. The observed associations suggest that structural abnormalities in dPFC and superior temporal gyrus are key neurocircuitry treatment targets for CR interventions that target impaired executive function in BD.
Collapse
Affiliation(s)
- M B Mogensen
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| | - J Macoveanu
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - C V Ott
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| | - K W Miskowiak
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Miskowiak KW, Møller AB, Ott CV. Neuronal and cognitive predictors of improved executive function following action-based cognitive remediation in patients with bipolar disorder. Eur Neuropsychopharmacol 2021; 47:1-10. [PMID: 33725651 DOI: 10.1016/j.euroneuro.2021.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
Cognitive impairments in bipolar disorder (BD) are prevalent but effective treatments with replicated and lasting pro-cognitive effects are lacking. Treatment development is hampered by a lack of neurocircuitry biomarkers to predict treatment efficacy. Action-Based Cognitive Remediation (ABCR) improves executive function in BD and this was accompanied by increased dorsal prefrontal cortex (dPFC) response during working memory (WM) after two weeks of treatment. This study investigated whether pre-treatment WM-related dPFC response, executive dysfunction and/or subjective cognitive difficulties predicted ABCR treatment response on executive functions. Forty-five patients with fully or partially remitted BD (ABCR: n = 25, control treatment: n = 20) in our ABCR trial completed a spatial N-back WM task during functional magnetic resonance imaging (fMRI) at baseline. Patients also completed neuropsychological tests and rated their cognitive functions before and after 10 weeks of ABCR or control treatment. Multiple linear regression analyses were conducted to assess whether pre-treatment dPFC response, objective executive impairment and/or subjective cognitive difficulties predicted greater ABCR-related improvements of executive function. We found that treatment-related improvement in executive function was predicted by more WM-related dPFC hypo-activity at baseline (p = 0.03) in linear regression analyses adjusted for age, gender and education. In contrast, there was only a non-significant trend towards more executive dysfunction at baseline predicting greater ABCR-related executive improvement (p = 0.08). Subjective cognitive difficulties at baseline showed no association with treatment effects (p = 0.16). In conclusion, pre-treatment dPFC hypo-activity during WM performance predicts greater effects of ABCR treatment on executive function and may represent a neurocircuitry biomarker for treatment efficacy in this cognitive domain.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet Dep. 6233, Blegdamsvej 9, 2100 Copenhagen, Denmark.; Department of Psychology, University of Copenhagen, Østre Farimagsgade 2A, 1353 Copenhagen, Denmark.
| | - Amalie B Møller
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet Dep. 6233, Blegdamsvej 9, 2100 Copenhagen, Denmark.; Department of Psychology and Behavioural Sciences, Bartholins Allé 11, Aarhus University, Aarhus, Denmark
| | - Caroline V Ott
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet Dep. 6233, Blegdamsvej 9, 2100 Copenhagen, Denmark.; Department of Psychology, University of Copenhagen, Østre Farimagsgade 2A, 1353 Copenhagen, Denmark
| |
Collapse
|
6
|
Im S, Lee J, Kim S. Preliminary Comparison of Subcortical Structures in Elderly Subclinical Depression: Structural Analysis with 3T MRI. Exp Neurobiol 2021; 30:183-202. [PMID: 33972469 PMCID: PMC8118753 DOI: 10.5607/en20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Depression in the elderly population has shown increased likelihood of neurological disorders due to structural changes in the subcortical area. However, further investigation into depression related subcortical changes is needed due to mismatches in structural analysis results between studies as well as scarcities in research regarding subcortical connectivity patterns of subclinical depression populations. This study aims to investigate structural differences in subcortical regions of aged participants with subclinical depression using 3Tesla MRI. In structural analysis, volumes of each subcortical region were measured to observe the volumetric difference and asymmetry between groups, but no significant difference was found. In addition, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) did not show any significant differences between groups. Structural analysis using probabilistic tractography indicated that the connection strength between left nucleus accumbens-right hippocampus, and right thalamus-right caudate was higher in the control group than the subclinical depression group. The differences in subcortical connection strength of subclinical depression groups, have shown to correlate with emotional and cognitive disorders, such as anxiety and memory impairment. We believe that the analysis of structural differences and cross-regional network measures in subcortical structures can help identify neurophysiological changes occurring in subclinical depression.
Collapse
Affiliation(s)
- SangJin Im
- Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|