1
|
Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ 2021; 12:25. [PMID: 33685490 PMCID: PMC7971120 DOI: 10.1186/s13293-021-00367-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.
Collapse
Affiliation(s)
- Shounak Baksi
- Causality Biomodels, Kerala Technology Innovation Zone, Cochin, 683503, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
2
|
Moskovich D, Alfandari A, Finkelshtein Y, Weisz A, Katzav A, Kidron D, Edelstein E, Veroslavski D, Perets R, Arbib N, Kadan Y, Fishman A, Lerer B, Ellis M, Ashur-Fabian O. DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Lett 2020; 501:224-233. [PMID: 33221455 DOI: 10.1016/j.canlet.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy with a need for better understanding the disease pathogenesis. The biologically active thyroid hormone, T3, is considered a tumor suppressor by promoting cell differentiation and mitochondrial respiration. Tumors evolved a strategy to avoid these anticancer actions by expressing the T3 catabolizing enzyme, Deiodinase type 3 (DIO3). This stimulates cancer proliferation and aerobic glycolysis (Warburg effect). We identified DIO3 expression in HGSOC cell lines, tumor tissues from mice and human patients, fallopian tube (FT) premalignant lesion and secretory cells of normal FT, considered the disease site-of-origin. Stable DIO3 knockdown (DIO3-KD) in HGSOC cells led to increased T3 bioavailability and demonstrated induced apoptosis and attenuated proliferation, migration, colony formation, oncogenic signaling, Warburg effect and tumor growth in mice. Proteomics analysis further indicated alterations in an array of cancer-relevant proteins, the majority of which are involved in tumor suppression and metabolism. Collectively this study establishes the functional role of DIO3 in facilitating tumorigenesis and metabolic reprogramming, and proposes this enzyme as a promising target for inhibition in HGSOC.
Collapse
Affiliation(s)
- Dotan Moskovich
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Alfandari
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Finkelshtein
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Aviva Katzav
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Debora Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Evgeny Edelstein
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Daniel Veroslavski
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nissim Arbib
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Yfat Kadan
- Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Martin Ellis
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Individualised requirements for optimum treatment of hypothyroidism: complex needs, limited options. Drugs Context 2019; 8:212597. [PMID: 31516533 PMCID: PMC6726361 DOI: 10.7573/dic.212597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Levothyroxine (LT4) therapy has a long history, a well-defined pharmacological profile and a favourable safety record in the alleviation of hypothyroidism. However, questions remain in defining the threshold for the requirement of treatment in patients with subclinical hypothyroidism, assessing the dose adequacy of the drug, and selecting the best treatment mode (LT4 monotherapy versus liothyronine [LT3]/LT4 combinations) for subpopulations with persisting complaints. Supplied as a prodrug, LT4 is enzymatically converted into the biologically more active thyroid hormone, triiodothyronine (T3). Importantly, tetraiodothyronine (T4) to T3 conversion efficiency may be impaired in patients receiving LT4, resulting in a loss of thyroid-stimulating hormone (TSH)-mediated feed-forward control of T3, alteration of the interlocking equilibria between serum concentrations of TSH, free thyroxine (FT4), and free triiodothyonine (FT3), and a decrease in FT3 to FT4 ratios. This downgrades the value of the TSH reference system derived in thyroid health for guiding the replacement dose in the treatment situation. Individualised conditionally defined setpoints may therefore provide appropriate biochemical targets to be clinically tested, together with a stronger focus on clinical presentation and future endpoint markers of tissue thyroid state. This cautionary note encompasses the use of aggregated statistical data from clinical trials which are not safely applicable to the individual level of patient care under these circumstances.
Collapse
Affiliation(s)
- Rudolf Hoermann
- Department for Nuclear Medicine, Klinikum Lüdenscheid, Paulmannshöherstr. 14, 58515 Lüdenscheid, Germany
| | | | - Rolf Larisch
- Department for Nuclear Medicine, Klinikum Lüdenscheid, Paulmannshöherstr. 14, 58515 Lüdenscheid, Germany
| | - Johannes W Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.,Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Alexandrinenstr. 5, 44791 Bochum, Germany
| |
Collapse
|
4
|
Ohkubo Y, Sekido T, Nishio SI, Sekido K, Kitahara J, Suzuki S, Komatsu M. Loss of μ-crystallin causes PPARγ activation and obesity in high-fat diet-fed mice. Biochem Biophys Res Commun 2018; 508:914-920. [PMID: 30545633 DOI: 10.1016/j.bbrc.2018.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
The thyroid hormone-binding protein μ-crystallin (CRYM) mediates thyroid hormone action by sequestering triiodothyronine in the cytoplasm and regulating the intracellular concentration of thyroid hormone. As thyroid hormone action is closely associated with glycolipid metabolism, it has been proposed that CRYM may contribute to this process by reserving or releasing triiodothyronine in the cytoplasm. We aimed to clarify the relationship between CRYM and glycolipid metabolism by comparing wild-type and CRYM knockout mice fed a high-fat diet. Each group was provided a high-fat diet for 10 weeks, and then their body weight and fasting blood glucose levels were measured. Although no difference in body weight was observed between the two groups with normal diet, the treatment with a high-fat diet was found to induce obesity in the knockout mice. The knockout group displayed increased dietary intake, white adipose tissue, fat cell hypertrophy, and hyperglycemia in the intraperitoneal glucose tolerance test. In CRYM knockout mice, liver fat deposits were more pronounced than in the control group. Enhanced levels of PPARγ, which is known to cause fatty liver, and ACC1, which is a target gene for thyroid hormone and is involved in the fat synthesis, were also detected in the livers of CRYM knockout mice. These observations suggest that CRYM deficiency leads to obesity and lipogenesis, possibly in part through increasing the food intake of mice fed a high-fat diet.
Collapse
Affiliation(s)
- Yohsuke Ohkubo
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Takashi Sekido
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Nishio
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan.
| | - Keiko Sekido
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Junichiro Kitahara
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satoru Suzuki
- Department of Thyroid and Endocrinology, Division of Internal Medicine, School of Medicine, Fukushima Medical University Hospital, Fukushima, 960-1295, Japan
| | - Mitsuhisa Komatsu
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
5
|
Little AG. Local Regulation of Thyroid Hormone Signaling. VITAMINS AND HORMONES 2018; 106:1-17. [DOI: 10.1016/bs.vh.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, Ramm G, Stanley EG, Elefanty AG, Wilkinson-Berka JL, Petratos S. Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine 2017; 25:122-135. [PMID: 29111262 PMCID: PMC5704066 DOI: 10.1016/j.ebiom.2017.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Cell membrane thyroid hormone (TH) transport can be facilitated by the monocarboxylate transporter 8 (MCT8), encoded by the solute carrier family 16 member 2 (SLC16A2) gene. Human mutations of the gene, SLC16A2, result in the X-linked-inherited psychomotor retardation and hypomyelination disorder, Allan-Herndon-Dudley syndrome (AHDS). We posited that abrogating MCT8-dependent TH transport limits oligodendrogenesis and myelination. We show that human oligodendrocytes (OL), derived from the NKX2.1-GFP human embryonic stem cell (hESC) reporter line, express MCT8. Moreover, treatment of these cultures with DITPA (an MCT8-independent TH analog), up-regulates OL differentiation transcription factors and myelin gene expression. DITPA promotes hESC-derived OL myelination of retinal ganglion axons in co-culture. Pharmacological and genetic blockade of MCT8 induces significant OL apoptosis, impairing myelination. DITPA treatment limits OL apoptosis mediated by SLC16A2 down-regulation primarily signaling through AKT phosphorylation, driving myelination. Our results highlight the potential role of MCT8 in TH transport for human OL development and may implicate DITPA as a promising treatment for developmentally-regulated myelination in AHDS. NKX2.1-based sorting enhances OL derivation from hESC MCT8 is required for the survival of OL precursor cells DITPA promotes OL differentiation and myelination DITPA overrides SLC16A2 (MCT8) down-regulation to potentiate myelination
Thyroid hormone is vital for oligodendrocyte differentiation and myelination. Lee and colleagues show that MCT8 is an integral thyroid hormone transporter for oligodendrocytes derived from human embryonic stem cells. Knockdown of this transporter induces apoptosis of OLs, which could be prevented by the provision of DITPA.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Devy Deliyanti
- Department of Diabetes, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Michael F Azari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Fernando Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adam Costin
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
7
|
Vargas-Uricoechea H, Bonelo-Perdomo A. Thyroid Dysfunction and Heart Failure: Mechanisms and Associations. Curr Heart Fail Rep 2017; 14:48-58. [DOI: 10.1007/s11897-017-0312-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Abstract
The nongenomic actions of thyroid hormone begin at receptors in the plasma membrane, mitochondria or cytoplasm. These receptors can share structural homologies with nuclear thyroid hormone receptors (TRs) that mediate transcriptional actions of T3, or have no homologies with TR, such as the plasma membrane receptor on integrin αvβ3. Nongenomic actions initiated at the plasma membrane by T4 via integrin αvβ3 can induce gene expression that affects angiogenesis and cell proliferation, therefore, both nongenomic and genomic effects can overlap in the nucleus. In the cytoplasm, a truncated TRα isoform mediates T4-dependent regulation of intracellular microfilament organization, contributing to cell and tissue structure. p30 TRα1 is another shortened TR isoform found at the plasma membrane that binds T3 and mediates nongenomic hormonal effects in bone cells. T3 and 3,5-diiodo-L-thyronine are important to the complex nongenomic regulation of cellular respiration in mitochondria. Thus, nongenomic actions expand the repertoire of cellular events controlled by thyroid hormone and can modulate TR-dependent nuclear events. Here, we review the experimental approaches required to define nongenomic actions of the hormone, enumerate the known nongenomic effects of the hormone and their molecular basis, and discuss the possible physiological or pathophysiological consequences of these actions.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy &Health Sciences, One Discovery Drive, Rennselaer, New York 12144, USA
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Jack L Leonard
- Department of Microbiology &Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
9
|
Seko D, Ogawa S, Li TS, Taimura A, Ono Y. μ-Crystallin controls muscle function through thyroid hormone action. FASEB J 2015; 30:1733-40. [PMID: 26718889 DOI: 10.1096/fj.15-280933] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
Abstract
μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action.
Collapse
Affiliation(s)
- Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and Institute of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki, Japan
| | - Shizuka Ogawa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| | - Akihiro Taimura
- Institute of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| |
Collapse
|
10
|
Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Homeostatic Control of the Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment. Front Endocrinol (Lausanne) 2015; 6:177. [PMID: 26635726 PMCID: PMC4653296 DOI: 10.3389/fendo.2015.00177] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022] Open
Abstract
The long-held concept of a proportional negative feedback control between the thyroid and pituitary glands requires reconsideration in the light of more recent studies. Homeostatic equilibria depend on dynamic inter-relationships between thyroid hormones and pituitary thyrotropin (TSH). They display a high degree of individuality, thyroid-state-related hierarchy, and adaptive conditionality. Molecular mechanisms involve multiple feedback loops on several levels of organization, different time scales, and varying conditions of their optimum operation, including a proposed feedforward motif. This supports the concept of a dampened response and multistep regulation, making the interactions between TSH, FT4, and FT3 situational and mathematically more complex. As a homeostatically integrated parameter, TSH becomes neither normatively fixed nor a precise marker of euthyroidism. This is exemplified by the therapeutic situation with l-thyroxine (l-T4) where TSH levels defined for optimum health may not apply equivalently during treatment. In particular, an FT3-FT4 dissociation, discernible FT3-TSH disjoint, and conversion inefficiency have been recognized in l-T4-treated athyreotic patients. In addition to regulating T4 production, TSH appears to play an essential role in maintaining T3 homeostasis by directly controlling deiodinase activity. While still allowing for tissue-specific variation, this questions the currently assumed independence of the local T3 supply. Rather it integrates peripheral and central elements into an overarching control system. On l-T4 treatment, altered equilibria have been shown to give rise to lower circulating FT3 concentrations in the presence of normal serum TSH. While data on T3 in tissues are largely lacking in humans, rodent models suggest that the disequilibria may reflect widespread T3 deficiencies at the tissue level in various organs. As a consequence, the use of TSH, valuable though it is in many situations, should be scaled back to a supporting role that is more representative of its conditional interplay with peripheral thyroid hormones. This reopens the debate on the measurement of free thyroid hormones and encourages the identification of suitable biomarkers. Homeostatic principles conjoin all thyroid parameters into an adaptive context, demanding a more flexible interpretation in the accurate diagnosis and treatment of thyroid dysfunction.
Collapse
Affiliation(s)
- Rudolf Hoermann
- Department of Nuclear Medicine, Klinikum Luedenscheid, Luedenscheid, Germany
| | | | - Rolf Larisch
- Department of Nuclear Medicine, Klinikum Luedenscheid, Luedenscheid, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
- *Correspondence: Johannes W. Dietrich,
| |
Collapse
|
11
|
Fernández-Real JM. Response to letter to the editor. J Clin Endocrinol Metab 2015; 100:L17. [PMID: 25559541 DOI: 10.1210/jc.2014-4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
12
|
Serrano M, Moreno M, Ortega FJ, Xifra G, Ricart W, Moreno-Navarrete JM, Fernández-Real JM. Adipose tissue μ-crystallin is a thyroid hormone-binding protein associated with systemic insulin sensitivity. J Clin Endocrinol Metab 2014; 99:E2259-68. [PMID: 25057873 DOI: 10.1210/jc.2014-1327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circulating thyroid hormones have been described to be intrinsically associated with insulin sensitivity in healthy subjects. μ-Crystallin is a nicotinamide adenine dinucleotide phosphate-dependent thyroid hormone-binding protein that has been shown to bind T3 in the cytoplasm. We aimed to study μ-Crystallin expression in adipose tissue and in muscle in association with insulin action and thyroid function. METHODS μ-Crystallin gene expression was studied in 81 visceral and 75 sc adipose tissue samples and in 26 muscle samples from a cohort of subjects with a wide spectrum of adiposity (cohort 1). μ-Crystallin was also evaluated in 30 morbidly obese subjects in whom insulin action was evaluated using euglycemic clamp (cohort 2) and in 22 sc adipose tissue samples obtained before and after bariatric surgery-induced weight loss (cohort 3). μ-Crystallin was also evaluated during differentiation of human adipocytes. μ-Crystallin was overexpressed in human sc adipocytes using lentiviruses. RESULTS μ-Crystallin gene expression was 2.6- to 3-fold higher in sc vs visceral adipose tissue in direct association with the expression of thyroid hormone receptor α 1 in cohort 1 and cohort 2. Visceral, but not sc, adipose tissue μ-Crystallin was positively associated with the serum T3/T4 ratio in cohort 1 and with insulin sensitivity in cohort 2. In fact, μ-Crystallin gene expression was significantly decreased in visceral adipose tissue (-43%) and in muscle (-26%) in subjects with impaired fasting glucose and type 2 diabetes. Weight loss did not result in significant sc adipose tissue μ-Crystallin changes. μ-Crystallin overexpression led to increased insulin-induced (Ser473)Akt phosphorylation in sc adipocytes. During differentiation of adipocytes, μ-Crystallin gene expression decreased in both visceral (P = .006) and sc (P = .003) adipocytes from obese subjects. CONCLUSION Visceral, but not sc, adipose tissue μ-Crystallin is an adipose tissue factor linked to parameters of thyroid hormone action (T3/T4 ratio) and might mediate the interaction of thyroid function and insulin sensitivity.
Collapse
Affiliation(s)
- Marta Serrano
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CB06/03/010), and Instituto de Salud Carlos III, 17007 Girona, Spain
| | | | | | | | | | | | | |
Collapse
|