1
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Takami H, Velásquez C, Asha MJ, Oswari S, Almeida JP, Gentili F. Creative and Innovative Methods and Techniques for the Challenges in the Management of Adult Craniopharyngioma. World Neurosurg 2021; 142:601-610. [PMID: 32987616 DOI: 10.1016/j.wneu.2020.05.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/05/2020] [Indexed: 10/23/2022]
Abstract
Craniopharyngioma remains a major challenge in daily clinical practice. The pathobiology of the tumor is still elusive, and there are no consensus or treatment guidelines on the optimal management strategy for this relatively rare tumor. However, recent technical and scientific advances, including genomic and radiomic profiling, innovation in surgical approaches, more precise radiotherapy protocols, targeted therapy, and restoration of lost functions all have the potential to significantly improve the outcome of patients with craniopharyngioma in the near future. Although many of these innovative tools in the new armamentarium of the clinician are still in their infancy, they could reduce craniopharyngioma-related morbidity and mortality and improve the patients' quality of life. In this article, we discuss these creative and innovative approaches that may offer solutions to the obstacles faced in treating craniopharyngioma and future possibilities in improving the care of these patients.
Collapse
Affiliation(s)
- Hirokazu Takami
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Carlos Velásquez
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Mohammed J Asha
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Selfy Oswari
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Joao Paulo Almeida
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Fred Gentili
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Yoshida S, Okura H, Suga H, Soen M, Kawaguchi Y, Kurimoto J, Miyata T, Takagi H, Arima H, Fujikawa T, Otsuka F, Matsuyama A. Generation of four induced pluripotent stem cell lines (FHUi003-A, FHUi003-B, FHUi004-A and FHUi004-B) from two affected individuals of a familial neurohypophyseal diabetes insipidus family. Stem Cell Res 2020; 48:101960. [PMID: 32927425 DOI: 10.1016/j.scr.2020.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
Four disease-specific induced pluripotent stem cell (iPSC) lines were respectively derived from peripheral blood mononuclear cells of two affected individuals in a family affected by familial neurohypophyseal diabetes insipidus carrying the c.314G>C mutation. The expression of pluripotency markers (NANOG, OCT4, and SOX2), maintenance of a normal karyotype, absence of episomal vectors used for iPSC generation, and presence of the original pathogenic mutation were confirmed for each iPSC line. The ability to differentiate into three germ layers was confirmed by a teratoma formation assay. These iPSC lines can help in disease recapitulation in vitro using organoids and elucidation of disease mechanisms.
Collapse
Affiliation(s)
- Satoru Yoshida
- Department of Regenerative Medicine and Stem Cell Biology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hanayuki Okura
- Department of Regenerative Medicine Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Fujikawa
- Department of General Internal Medicine, Mitoyo General Hospital, Kanonji, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry Pharmaceutical Sciences, Okayama, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine and Stem Cell Biology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
4
|
Abstract
Growth hormone (GH) research and its clinical application for the treatment of growth disorders span more than a century. During the first half of the 20th century, clinical observations and anatomical and biochemical studies formed the basis of the understanding of the structure of GH and its various metabolic effects in animals. The following period (1958-1985), during which pituitary-derived human GH was used, generated a wealth of information on the regulation and physiological role of GH - in conjunction with insulin-like growth factors (IGFs) - and its use in children with GH deficiency (GHD). The following era (1985 to present) of molecular genetics, recombinant technology and the generation of genetically modified biological systems has expanded our understanding of the regulation and role of the GH-IGF axis. Today, recombinant human GH is used for the treatment of GHD and various conditions of non-GHD short stature and catabolic states; however, safety concerns still accompany this therapeutic approach. In the future, new therapeutics based on various components of the GH-IGF axis might be developed to further improve the treatment of such disorders. In this Review, we describe the history of GH research and clinical use with a particular focus on disorders in childhood.
Collapse
Affiliation(s)
- Michael B Ranke
- Department of Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Cheung LYM, Davis SW, Brinkmeier ML, Camper SA, Pérez-Millán MI. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol Cell Endocrinol 2017; 445:14-26. [PMID: 27650955 PMCID: PMC5590650 DOI: 10.1016/j.mce.2016.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-0001, USA.
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - María Inés Pérez-Millán
- Institute of Biomedical Investgations (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|