1
|
Qian Y, Tong Y, Zeng Y, Huang J, Liu K, Xie Y, Chen J, Gao M, Liu L, Zhao J, Hong Y, Nie X. Integrated lipid metabolomics and proteomics analysis reveal the pathogenesis of polycystic ovary syndrome. J Transl Med 2024; 22:364. [PMID: 38632610 PMCID: PMC11022415 DOI: 10.1186/s12967-024-05167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinological and metabolic disorder that can lead to female infertility. Lipid metabolomics and proteomics are the new disciplines in systems biology aimed to discover metabolic pathway changes in diseases and diagnosis of biomarkers. This study aims to reveal the features of PCOS to explore its pathogenesis at the protein and metabolic level. METHODS We collected follicular fluid samples and granulosa cells of women with PCOS and normal women who underwent in vitro fertilization(IVF) and embryo transfer were recruited. The samples were for the lipidomic study and the proteomic study based on the latest metabolomics and proteomics research platform. RESULTS Lipid metabolomic analysis revealed abnormal metabolism of glycerides, glycerophospholipids, and sphingomyelin in the FF of PCOS. Differential lipids were strongly linked with the rate of high-quality embryos. In total, 144 differentially expressed proteins were screened in ovarian granulosa cells in women with PCOS compared to controls. Go functional enrichment analysis showed that differential proteins were associated with blood coagulation and lead to follicular development disorders. CONCLUSION The results showed that the differential lipid metabolites and proteins in PCOS were closely related to follicle quality,which can be potential biomarkers for oocyte maturation and ART outcomes.
Collapse
Affiliation(s)
- Yu Qian
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yun Tong
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yaqiong Zeng
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingyu Huang
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kailu Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ying Xie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Chen
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mengya Gao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Zhao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanli Hong
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Xiaowei Nie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Krentowska A, Kowalska I. Metabolic syndrome and its components in different phenotypes of polycystic ovary syndrome. Diabetes Metab Res Rev 2022; 38:e3464. [PMID: 33988288 DOI: 10.1002/dmrr.3464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-age women. Important factors in its pathogenesis are hyperinsulinaemia and insulin resistance, which lead to higher risk of metabolic syndrome (MetS) and its complications. With the implementation of the Rotterdam diagnostic criteria in 2003, the group of PCOS patients became highly heterogeneous, with varying metabolic risk reported for different phenotypes of the syndrome. The aim of the present review is to assess the prevalence and severity of MetS and its components in patients with the four phenotypes of PCOS. A comprehensive search of Pubmed database was performed to identify studies comparing metabolic characteristics between PCOS patients with different phenotypes of the syndrome. The results of 60 studies published between 2004 and 2020 were retrieved and analysed. More adverse metabolic profile was observed in PCOS patients with hyperandrogenic phenotypes in comparison to normoandrogenic patients, as well as in classic phenotypes, defined by National Institutes of Health criteria, in comparison to newer phenotypes introduced by the Rotterdam criteria. In the majority of observations, normoandrogenic PCOS patients did not differ significantly from controls in terms of metabolic characteristics, although some East Asian studies reported more adverse metabolic profile in normoandrogenic phenotype in comparison to healthy women. In conclusion, metabolic abnormalities in PCOS seem to be associated with joint effects of hyperandrogenism, insulin resistance and visceral obesity. The differences observed between the four phenotypes of PCOS underline the need for individualised diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|