1
|
Luo Z, Lei Y, Zeng L, Chen X, Liu S, Zhang Q. Iodine-131 intervention in hyperthyroidism with hepatic insufficiency: Metabolomic evaluation. Biomed Pharmacother 2024; 173:116300. [PMID: 38430629 DOI: 10.1016/j.biopha.2024.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Hyperthyroidism, often accompanied by hepatic insufficiency (HI), poses significant clinical challenges, highlighting the necessity for identifying optimal treatment strategies and early diagnostic biomarkers to improve patient outcomes. This study aimed to determine the optimal iodine-131 (131I) intervention dose for alleviating hyperthyroidism with HI and to identify serum metabolic biomarkers for early diagnosis using UPLC-Q/TOF-MS technology. A mouse model for early 131I intervention was established to monitor changes in physiological response, body weight, fur condition, thyroid, and liver function. Metabolite identification was achieved through UPLC-Q/TOF-MS and further analyzed via MetaboAnalyst. Six biomarkers were identified and subjected to ROC analysis. Early intervention with 80 μCi 131I per gram of thyroid tissue effectively controlled hyperthyroidism and improved liver function. Metabolomics analysis uncovered 63 differentially abundant metabolites, six of which (L-kynurenine, Taurochenodesoxycholic acid, Glycocholic acid, Phytosphingosine, Tryptamine, and Betaine) were identified as early warning biomarkers. Post-intervention, these biomarkers progressively returned to normal levels. This study demonstrates the efficacy of UPLC-Q/TOF-MS in identifying metabolic biomarkers for early diagnosis of hyperthyroidism with HI and highlights the therapeutic potential of early 131I intervention in normalizing these biomarkers.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Yangyang Lei
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Lingpeng Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Xuezhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Shaozheng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Duan H, Jiang Z, Chen L, Bai X, Cai H, Yang X, Huang H. TSHR-based chimeric antigen receptor T cell specifically deplete auto-reactive B lymphocytes for treatment of autoimmune thyroid disease. Int Immunopharmacol 2023; 124:110873. [PMID: 37690235 DOI: 10.1016/j.intimp.2023.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Graves' disease (GD) is a prominent antibody-mediated autoimmune disorder characterized by stimulating antibodies (TRAb) that target the thyroid-stimulating hormone receptor (TSHR). Targeting and eliminating TRAb-producing B lymphocytes hold substantial therapeutic potential for GD. In this study, we engineered a novel chimeric antigen receptor T cell (CAR-T) therapy termed TSHR-CAR-T. This CAR-T construct incorporates the extracellular domain of the TSH receptor fused with the CD8 transmembrane and intracellular signal domain (4-1BB). TSHR-CAR-T cells demonstrated the ability to recognize and effectively eliminate TRAb-producing B lymphocytes both in vitro and in vivo. Leveraging this autoantigen-based chimeric receptor, our findings suggest that TSHR-CAR-T cells offer a promising and innovative immunotherapeutic approach for the treatment of antibody-mediated autoimmune diseases, including GD.
Collapse
Affiliation(s)
- Honghong Duan
- Department of obstetrics and gynecology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Zhengrong Jiang
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lijun Chen
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xuefeng Bai
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Huiyao Cai
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xinna Yang
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Huibin Huang
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
3
|
Lou K, Liu S, Zhang F, Sun W, Su X, Bi W, Yin Q, Qiu Y, Zhang Z, Jing M, Ma S. The effect of hyperthyroidism on cognitive function, neuroinflammation, and necroptosis in APP/PS1 mice. J Transl Med 2023; 21:657. [PMID: 37740205 PMCID: PMC10517505 DOI: 10.1186/s12967-023-04511-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Increasing evidence has linked the thyroid dysfunction to the pathogenesis of dementia. Evidence from clinical studies has demonstrated that hypothyroidism is related to an increased risk of dementia. But the association of hyperthyroidism with dementia is largely unknown. METHODS We used the adenovirus containing thyrotropin receptor (TSHR) amino acid residues 1-289 (Ad-TSHR289)-induced Graves' disease (GD) phenotype in Alzheimer's disease (AD) model mice (APP/PS1 mice) to evaluate the effect of hyperthyroidism on the cognitive function and β-amyloid (Aβ) accumulation. RESULTS GD mice exhibited a stable long-term hyperthyroidism and cognitive deficits. Single Cell RNA-sequencing analysis indicated that microglia function played a critical role in the pathophysiological processes in GD mice. Neuroinflammation and polarization of microglia (M1/M2 phenotype) and activated receptor-interacting serine/threonine protein kinase 3 (RIPK3)/mixed lineage kinase domain-like pseudo-kinase (MLKL)-mediated necroptosis contributed to the pathological process, including Aβ deposition and neuronal loss. RIPK3 inhibitor could inhibit GD-mediated Aβ accumulation and neuronal loss. CONCLUSIONS Our findings reveal that GD hyperthyroidism aggravates cognitive deficits in AD mice and induces Aβ deposition and neuronal loss by inducing neuroinflammation and RIPK3/MLKL-mediated necroptosis.
Collapse
Affiliation(s)
- Kai Lou
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, 250013, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, 271000, Shandong, China
| | - Xinhuan Su
- Department of Geriatrics Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaxin Qiu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Zhenyuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Mengzhe Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Ma W, Zhang X, Zhao R, Tang Y, Zhu X, Liu L, Xu M, Wang G, Peng P, Liu J, Liu Z. Effectiveness and potential mechanism of Jiawei-Xiaoyao-San for hyperthyroidism: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1241962. [PMID: 37780612 PMCID: PMC10534980 DOI: 10.3389/fendo.2023.1241962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Objectives To evaluate the effectiveness and potential mechanism of traditional Chinese medicine Jiawei-Xiaoyao-San (JWXYS) as an adjunct or mono- therapy for antithyroid drugs (ATDs) in the treatment of hyperthyroidism. Methods Eight databases and three trial registries were searched from inception until May 2023. Randomized controlled trials (RCTs) were included and meta-analysis was conducted using RevMan 5.4 and Stata 14.0. The Cochrane risk of bias (ROB) tool 1.0 and GRADE tool was used for quality appraisal. The findings from case reports using mono-JWXYS and pharmacological studies were summarized in tables. Results Thirteen RCTs with 979 participants were included. The majority of the included studies were assessed as high risk of bias in one ROB domain. Compared with ATDs, JWXYS plus ATDs resulted in lower free triiodothyronine (FT3) (MD = -1.31 pmol/L, 95% CI [-1.85, -0.76]; low-certainty), lower free thyroxine (MD = -3.24 pmol/L, 95% CI [-5.06, -1.42]; low-certainty), higher thyroid stimulating hormone (MD = 0.42 mIU/L, 95% CI [0.26, 0.59]; low-certainty), higher effectiveness rate of traditional Chinese medicine syndrome (RR = 1.28, 95% CI [1.08, 1.52]; low-certainty), lower goiter score (MD = -0.66, 95% CI [-1.04, -0.29]; very low-certainty), lower thyrotrophin receptor antibody (SMD = -0.44, 95% CI [-0.73, -0.16]; low-certainty) and fewer adverse events (AEs) (RR = 0.34, 95% CI [0.18, 0.67]; moderate-certainty). Compared with regular dosage of ATDs, JWXYS plus half-dose ATDs resulted in fewer AEs (RR = 0.24, 95% CI [0.10, 0.59]; low-certainty). Compared with ATDs in 1 trial, JWXYS resulted in higher FT3, lower goiter score and fewer AEs. Three case reports showed that the reasons patients sought TCM-only treatment include severe AEs and multiple relapses. Three pharmacological studies demonstrated that JWXYS restored Th17/Treg balance, lowered deiodinases activity, regulated thyroid cell proliferation and apoptosis, and alleviated liver oxidative stress in mouse or rat models. Conclusion JWXYS may enhance the effectiveness of ATDs for hyperthyroidism, particularly in relieving symptoms and reducing AEs. Mono-JWXYS is not recommended except in patients intolerant to ATDs. The findings should be interpreted with caution due to overall high risk of bias. Further pharmacological studies with more reliable models are needed. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023394923.
Collapse
Affiliation(s)
- Wenxin Ma
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Zhang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruotong Zhao
- Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longkun Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Mingyuan Xu
- Beijing University of Chinese Medicine, Beijing, China
| | - Ge Wang
- Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiyue Peng
- Beijing University of Chinese Medicine, Beijing, China
| | - Jianping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Community Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Zhaolan Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Zhang M, Jiang W, Lu G, Wang R, Lv Z, Li D. Insight Into Mouse Models of Hyperthyroidism. Front Endocrinol (Lausanne) 2022; 13:929750. [PMID: 35813642 PMCID: PMC9257255 DOI: 10.3389/fendo.2022.929750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperthyroidism is characterized by an increase in the synthesis and secretion of thyroid hormones in the thyroid gland, and the most common cause of overproduction of thyroid hormones is Graves' disease (GD). Long-term disease models of hyperthyroidism have been established. In general, methods to induce GD include transfection of fibroblasts, injecting plasmids or adenovirus containing thyroid stimulating hormone receptor (TSHR) or TSHR subunit, and exogenous artificial thyroid hormone supplementation. Fortunately, in mouse studies, novel treatments for GD and Graves' orbitopathy (GO) were discovered. It has been reported that prophylactic administration of TSHR A subunit protein in genetically susceptible individuals could induce immune tolerance and provide protection for the future development of GD. Biologically active monoclonal antibody against intracellular adhesion molecule-1 (ICAM-1 mAb) and siRNA targeting TSHR can also be used to treat GD. Moreover, new potential therapeutic targets have been identified in GO mouse models, and these targets could present novel therapeutic approaches. Besides, human placental mesenchymal stem cells (hPMSCs) into the orbit, fucoxanthin and icariin may be new alternative therapies that could be used in addition to the existing drugs, although further research is needed.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ganghua Lu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ru Wang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Dan Li, ; Zhongwei Lv,
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Dan Li, ; Zhongwei Lv,
| |
Collapse
|