1
|
Wang Y, Xu H, Zhou X, Chen W, Zhou H. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases. MEDICAL REVIEW (2021) 2024; 4:262-283. [PMID: 39135605 PMCID: PMC11317083 DOI: 10.1515/mr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huangru Xu
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
2
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
3
|
Qi L, Chen Y. Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention. J Clin Endocrinol Metab 2023; 108:251-270. [PMID: 36374935 DOI: 10.1210/clinem/dgac659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
CONTEXT Bile acids (BAs) are pivotal signaling molecules that regulate energy metabolism and inflammation. Recent epidemiological studies have reported specific alterations in circulating BA profiles in certain disease states, including obesity, type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and Alzheimer disease (AD). In the past decade, breakthroughs have been made regarding the translation of BA profiling into clinical use for disease prediction. In this review, we summarize and synthesize recent data on variation in circulating BA profiles in patients with various diseases to evaluate the value of these biomarkers in human plasma for early diagnosis. EVIDENCE ACQUISITION This review is based on a collection of primary and review literature gathered from a PubMed search for BAs, obesity, T2DM, insulin resistance (IR), NAFLD, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), colon cancer, and AD, among other keywords. EVIDENCE SYNTHESIS Individuals with obesity, T2DM, HCC, CCA, or AD showed specific alterations in circulating BA profiles. These alterations may have existed long before the initial diagnosis of these diseases. The intricate relationship between obesity, IR, and NAFLD complicates the establishment of clear and independent associations between BA profiles and nonalcoholic steatohepatitis. Alterations in the levels of total BAs and several BA species were seen across the entire spectrum of NAFLD, demonstrating significant increases with the worsening of histological features. CONCLUSIONS Aberrant circulating BA profiles are an early event in the onset and progression of obesity, T2DM, HCC, and AD. The pleiotropic effects of BAs explain these broad connections. Circulating BA profiles could provide a basis for the development of biomarkers for the diagnosis and prevention of a wide range of diseases.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
4
|
The Periparturient Gut Microbiota's Modifications in Shaziling Sows concerning Bile Acids. Metabolites 2023; 13:metabo13010068. [PMID: 36676993 PMCID: PMC9863110 DOI: 10.3390/metabo13010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Shaziling pigs, as a native Chinese breed, have been classified as a fatty liver model. As the core of the whole pig farm, the sow’s organism health is especially important, especially in the perinatal period; however, there are few reports on the perinatal intestinal microbiology and bile acid metabolism of Shaziling pig sows. The purpose of this research was to investigate the alterations in bile acids and gut microbiota of sows that occur throughout the perinatal period. Forty-two sows were selected for their uniformity of body conditions and were given the same diet. Fecal samples were collected for 16srDNA sequencing and bile acid targeted metabolome detection in four stages (3 days before delivery, 3 days after delivery, 7 days after delivery and 21 days after delivery). As revealed by the results, there were statistically significant variations in bile acids among the four stages, with the concentration of bile acids identified by SZL-4 being substantially greater than that of the other three groups (p < 0.05). When compared to the other three groups (p < 0.05), SZL-2 had considerably lower Shannon, Simpson and Chao 1 indices, and exhibited a statistically significant difference in β-diversity. SZL-2 samples included a greater proportion of Proteobacteria than SZL-3 and SZL-4 samples; however, SZL-2 samples contained a smaller proportion of spirochetes than SZL-3 and SZL-4 samples. To a large extent, lactic acid bacteria predominated in the SZL-2 samples. The LEfSe analysis showed that the relative abundances of Lachnospiraceae_XPB1014_group, Christensenellaceae_R_7_group, Clostridium, Collinsella, Turicibacter, and Mollicutes_RF39_unclassified were the main differential bacteria in the SZL-1 swine fecal samples and the Eubacterium__coprostanoligenes_group in sow fecal samples from SZL-2. The relative abundance of Bacteroides, UBA1819, Enterococcus, Erysipelatoclostridium, and Butyricimonas in SZL-3 and SZL-4 Streptococcus, Coriobacteriaceae_unclassified, Prevotellaceae_UCG_001, Streptomyces, and Ochrobactrum in SZL-3. g_Collinsella was significantly and positively correlated with vast majority bile acids, and the g_Lachnospiraceae_XPB1014_group with GCDCA and GHDCA into positive correlations. Simultaneously, g_Streptococcus, g_Bacteroides, and g_UBA1819 inversely correlated with bile acid, accounting for the great bulk of the difference. In conclusion, there is an evident correlation between bile acids and gut microbiota in the perinatal period of Shaziling sows. Additionally, the discovery of distinct bacteria associated to lipid metabolism gives a reference for ameliorating perinatal body lipid metabolism disorder of sows through gut microbiota.
Collapse
|
5
|
Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X, Sui B, Li X, Zhang P. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 2022; 13:1027212. [PMID: 36386219 PMCID: PMC9640995 DOI: 10.3389/fphar.2022.1027212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 10/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs that cannot effectively use the insulin. Insulin Resistance (IR) is a significant characteristic of T2DM which is also an essential treatment target in blood glucose regulation to prevent T2DM and its complications. Bile acids (BAs) are one group of bioactive metabolites synthesized from cholesterol in liver. BAs play an important role in mutualistic symbiosis between host and gut microbiota. It is shown that T2DM is associated with altered bile acid metabolism which can be regulated by gut microbiota. Simultaneously, BAs also reshape gut microbiota and improve IR and T2DM in the bidirectional communications of the gut-liver axis. This article reviewed the findings on the interaction between BAs and gut microbiota in improving T2DM, which focused on gut microbiota and its debinding function and BAs regulated gut microbiota through FXR/TGR5. Meanwhile, BAs and their derivatives that are effective for improving T2DM and other treatments based on bile acid metabolism were also summarized. This review highlighted that BAs play a critical role in the glucose metabolism and may serve as therapeutic targets in T2DM, providing a reference for discovering and screening novel therapeutic drugs.
Collapse
Affiliation(s)
- Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yili Xue
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Yaru Liu
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
6
|
Yoshinobu S, Hasuzawa N, Nagayama A, Iwata S, Yasuda J, Tokubuchi R, Kabashima M, Gobaru M, Hara K, Murotani K, Moriyama Y, Ashida K, Nomura M. Effects of Elobixibat, an Inhibitor of Ileal Bile Acid Transporter, on Glucose and Lipid Metabolism: A Single-Arm Pilot Study in Patients with T2DM. Clin Ther 2022; 44:1418-1426. [PMID: 36117045 DOI: 10.1016/j.clinthera.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE The ileal bile acid transporter inhibitor elobixibat was recently approved in Japan for use in the treatment of patients with chronic constipation. Elobixibat has been associated with increased plasma glucagon-like peptide 1 level through Takeda G protein receptor 5, which is a membrane receptor of bile acids. The present study assessed the metabolic effects of elobixibat in patients with type 2 diabetes mellitus (T2DM)-related constipation. METHODS In this single-arm pilot study, 21 patients with T2DM and constipation were administered elobixibat 10 mg/d for 12 weeks (period 1). The primary end point was the change in hemoglobin (Hb) A1c at week 12. Secondary end points included physical parameters; constipation symptoms; and blood parameters, such as low-density lipoprotein cholesterol (LDL-C), arachidonic acid (AA), and fatty acid fractions. Thereafter, the study participants chose whether to continue therapy for an additional 12 weeks (period 2), at which point HbA1c and lipid levels were reevaluated. Safety information, including adverse events, discontinuation and interruption of the drug, was collected at each visit during the trial. FINDINGS Period 1: the levels of HbA1c, LDL-C, and AA were significantly reduced after administration of elobixibat for 12 weeks (-0.2%, -21.4 mg/dL, and -16.1 µg/dL, respectively; P = 0.016, P < 0.001, and P = 0.010). Period 2: at week 24, the change from baseline in HbA1c was significantly greater among those who continued elobixibat treatment than in those who discontinued after 12 weeks (-0.23% vs +0.21%; P = 0.038). No serious or severe adverse events were observed. IMPLICATIONS Elobixibat may benefit patients with T2DM by improving glucose metabolism and lowering serum LDL-C and AA levels, in addition to ameliorating constipation. This single-arm pilot study was of a small sample size. The findings provide a basis for designing a larger-scale study to confirm the effects of elobixibat on glucose and lipid metabolism. (UMIN Clinical Trials Registry identifier: UMIN000045508; https://www.umin.ac.jp/ctr/index.htm).
Collapse
Affiliation(s)
- Satoko Yoshinobu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes.
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Shimpei Iwata
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Junichi Yasuda
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Rie Tokubuchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Masaharu Kabashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Mizuki Gobaru
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Kento Hara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Kurume, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| |
Collapse
|
7
|
Huang HY, Huang ZQ, Hua LY, Liu WS, Xu F, Ge XQ, Lu CF, Su JB, Wang XQ. The association between normal serum sodium levels and bone turnover in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:927223. [PMID: 36387923 PMCID: PMC9646934 DOI: 10.3389/fendo.2022.927223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sodium is a critically important component of bones, and hyponatremia has firmly been established as a risk factor associated with the incidence of fragility fractures. However, researches have also revealed that lower serum sodium are linked to reductions in muscle mass and a higher risk of cardiovascular disease even when these levels are within the normal range. Accordingly, this study was developed to examine the relationships between normal serum sodium concentrations and bone turnover in patients with type 2 diabetes (T2D). METHODS Patients with T2D were enrolled in the present study from January 2021 to April 2022. All patients underwent analyses of serum sodium levels, oral glucose tolerance testing (OGTT), bone turnover markers (BTMs), and dual-energy X-ray absorptiometry (DXA) scanning. BTMs included bone formation markers osteocalcin (OC) and N-terminal propeptide of type-I procollagen (PINP), and bone resorption marker C-terminal telopeptide (CTx). Patients were stratified into three subgroups based on the tertiles of their serum sodium concentrations. RESULTS In total, 372 patients with T2D and sodium levels in the normal range were enrolled in this study. Serum OC and PINP levels were increased from subgroup with the low sodium tertile to that with the high sodium tertile (p for trend < 0.05), whereas CTx level was comparable among the subgroups. A positive correlation was detected between serum sodium levels and both lnOC (r = 0.210, p < 0.001) and lnPINP (r = 0.196, p < 0.001), with these relationships remaining significant even following adjustment for age, sex, body mass index (BMI), and HbA1c. Only after adjusting for these four factors a positive correlation was detected between serum sodium levels and CTx levels (r = 0.108, p < 0.05). Linear regression analyses revealed that following adjustment for potential covariates, serum sodium level was and positively significantly associated with lnOC level (β = 0.134, t = 2.281, p < 0.05) and PINP level (β = 0.179, t = 3.023, p < 0.01). CONCLUSION These results highlight a significant association between low-normal serum sodium levels and low bone turnover.
Collapse
Affiliation(s)
- Hai-yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Zhi-qi Huang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Ling-yan Hua
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Chun-feng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Chun-feng Lu, ; Jian-bin Su, ; Xue-qin Wang,
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Chun-feng Lu, ; Jian-bin Su, ; Xue-qin Wang,
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Chun-feng Lu, ; Jian-bin Su, ; Xue-qin Wang,
| |
Collapse
|
8
|
Lu CF, Liu WS, Huang HY, Ge XQ, Hua LY, Wang XQ, Su JB. The Positive Relationship Between the Low-Density Lipoprotein Cholesterol/Apoprotein B Ratio and Bone Turnover Markers in Patients With Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:903336. [PMID: 35757416 PMCID: PMC9223462 DOI: 10.3389/fendo.2022.903336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dyslipidemia may contribute to low bone turnover in patients with type 2 diabetes (T2D) through mediating oxidative stress and atherosclerosis. The low-density lipoprotein cholesterol/apoprotein B (LDL-C/Apo B) ratio is a surrogate marker of small and density low-density lipoprotein cholesterol (sd-LDL-C), a most harmful group of LDL-Cs. The present study aimed to investigate the association between the LDL-C/Apo B ratio and bone turnover in patients with T2D. METHODS This study was a cross-sectional study enrolled patients with T2D from January 2021 to December 2021. Each participant was assessed for lipid profiles, bone turnover markers (BTMs), lumbar spine (L1-L4) and hip dual-energy X-ray absorptiometry (DXA) scans. Osteoporosis was diagnosed as a T-score lower than or equal to -2.5 at the spine or hip. RESULTS A total of 335 patients with T2D were enrolled in the study, and the LDL-C/Apo B ratio ranged from 0.78 to 4.00. Along with the LDL-C/Apo B ratio tertile ascending, osteocalcin (OC), C-terminal telopeptide (CTx) and N-terminal propeptide of type-I procollagen (PINP) levels gradually increased (all p < 0.05). There were no differences in lumbar spine and hip T-score, proportion of osteoporosis (all p > 0.05) among the three subgroups. The LDL-C/Apo B ratio was positively correlated with lnOC (r = 0.244, p < 0.001), lnCTx (r = 0.226, p < 0.01) and lnPINP (r = 0.211, p < 0.001). These significant positive correlations persisted even when divided into male and female subgroups. Furthermore, three multiple linear regression analyses were constructed to investigate the independent association of the LDL-C/Apo B ratio with the BTMs levels. After adjusting for other clinical parameters, the LDL-C/Apo B ratio was still significantly associated with OC level (β = 0.199, t = 3.348, p < 0.01), CTx level (β = 0.238, t = 4.084, p < 0.001) and PINP level (β = 0.162, t = 2.741, p < 0.01). CONCLUSION The LDL-C/Apo B ratio was significantly and positively associated with BTMs in patients with T2D. In clinical practice, more attention should be paid to the patients with T2D whose LDL-C/Apo B ratio is relatively low for the purpose of maintaining bone health.
Collapse
Affiliation(s)
- Chun-feng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Chun-feng Lu, ; Xue-qin Wang, ; Jian-bin Su,
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Hai-yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Ling-yan Hua
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Chun-feng Lu, ; Xue-qin Wang, ; Jian-bin Su,
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Chun-feng Lu, ; Xue-qin Wang, ; Jian-bin Su,
| |
Collapse
|
9
|
Qi L, Tian Y, Chen Y. Circulating Bile Acid Profiles: A Need for Further Examination. J Clin Endocrinol Metab 2021; 106:3093-3112. [PMID: 34279029 DOI: 10.1210/clinem/dgab531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are increasingly recognized as metabolic and chronobiologic integrators that synchronize the systemic metabolic response to nutrient availability. Alterations in the concentration and/or composition of circulating BAs are associated with a number of metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), insulin resistance (IR), and metabolic associated fatty liver disease (MAFLD). This review summarizes recent evidence that links abnormal circulating BA profiles to multiple metabolic disorders, and discusses the possible mechanisms underlying the connections to determine the role of BA profiling as a novel biomarker for these abnormalities. EVIDENCE ACQUISITION The review is based on a collection of primary and review literature gathered from a PubMed search of BAs, T2DM, IR, and MAFLD, among other keywords. EVIDENCE SYNTHESIS Obese and IR subjects appear to have elevated fasting circulating BAs but lower postprandial increase when compared with controls. The possible underlying mechanisms are disruption in the synchronization between the feeding/fasting cycle and the properties of BA-regulated metabolic pathways. Whether BA alterations are associated per se with MAFLD remains inconclusive. However, increased fasting circulating BAs level was associated with higher risk of advanced fibrosis stage. Thus, for patients with MAFLD, dynamically monitoring the circulating BA profiles may be a promising tool for the stratification of MAFLD. CONCLUSIONS Alterations in the concentration, composition, and rhythm of circulating BAs are associated with adverse events in systemic metabolism. Subsequent investigations regarding these aspects of circulating BA kinetics may help predict future metabolic disorders and guide therapeutic interventions.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
10
|
Zhou Q, Wang Y, Gu Y, Li J, Wang H, Leng J, Li W, Yu Z, Hu G, Ma RCW, Fang ZZ, Yang X, Jiang G. Genetic variants associated with beta-cell function and insulin sensitivity potentially influence bile acid metabolites and gestational diabetes mellitus in a Chinese population. BMJ Open Diabetes Res Care 2021; 9:9/1/e002287. [PMID: 34518156 PMCID: PMC8438732 DOI: 10.1136/bmjdrc-2021-002287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION To investigate associations between genetic variants related to beta-cell (BC) dysfunction or insulin resistance (IR) in type 2 diabetes (T2D) and bile acids (BAs), as well as the risk of gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS We organized a case-control study of 230 women with GDM and 217 without GDM nested in a large prospective cohort of 22 302 Chinese women in Tianjin, China. Two weighted genetic risk scores (GRSs), namely BC-GRS and IR-GRS, were established by combining 39 and 23 single nucleotide polymorphisms known to be associated with BC dysfunction and IR, respectively. Regression and mediation analyses were performed to evaluate the relationship of GRSs with BAs and GDM. RESULTS We found that the BC-GRS was inversely associated with taurodeoxycholic acid (TDCA) after adjustment for confounders (Beta (SE)=-0.177 (0.048); p=2.66×10-4). The BC-GRS was also associated with the risk of GDM (OR (95% CI): 1.40 (1.10 to 1.77); p=0.005), but not mediated by TDCA. Compared with individuals in the low tertile of BC-GRS, the OR for GDM was 2.25 (95% CI 1.26 to 4.01) in the high tertile. An interaction effect of IR-GRS with taurochenodeoxycholic acid (TCDCA) on the risk of GDM was evidenced (p=0.005). Women with high IR-GRS and low concentration of TCDCA had a markedly higher OR of 14.39 (95% CI 1.59 to 130.16; p=0.018), compared with those with low IR-GRS and high TCDCA. CONCLUSIONS Genetic variants related to BC dysfunction and IR in T2D potentially influence BAs at early pregnancy and the development of GDM. The identification of both modifiable and non-modifiable risk factors may facilitate the identification of high-risk individuals to prevent GDM.
Collapse
Affiliation(s)
- Qiulun Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ying Wang
- The Second School of Clinical Medicine, Key Laboratory of 3D Printing Technology in Stomatology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Cao J, Wang H, Su JB, Wang XQ, Zhang DM, Wang XH, Liu WS, Ge XQ. Inverse relationship between serum adenosine deaminase levels and islet beta cell function in patients with type 2 diabetes. Diabetol Metab Syndr 2021; 13:54. [PMID: 34001220 PMCID: PMC8127294 DOI: 10.1186/s13098-021-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease, which characterized by islet beta cell dysfunction. Serum adenosine deaminase (ADA) is an important enzyme that regulates the biological activity of insulin, and its levels are greatly increased in inflammatory diseases with insulin resistance. The present study was designed to explore the relationship between serum ADA levels and islet beta cell function in patients with T2D. METHODS This cross-sectional study recruited 1573 patients with T2D from the Endocrinology Department of the Affiliated Hospital 2 of Nantong University between 2015 and 2018. All participants were received serum ADA test and oral glucose tolerance test (OGTT). Insulin sensitivity index (assessed by Matsuda index using C-peptide, ISIM-cp), insulin secretion index (assessed by ratio of area under the C-peptide curve to glucose curve, AUCcp/glu) and islet beta cell function (assessed by insulin secretion-sensitivity index 2 using C-peptide, ISSI2cp) were derived from OGTT. And other clinical parameters, such as HbA1c, were also collected. RESULTS It was showed that HbA1c was significantly increased, while ISIM-cp, AUCcp/glu and ISSI2cp significantly decreased, across ascending quartiles of serum ADA levels. Moreover, serum ADA levels were negatively correlated with ISSI2cp (r = - 0.267, p < 0.001). Furthermore, after adjusting for other clinical parameters by multiple linear regression analysis, serum ADA levels were still independently associated with ISSI2cp (β = - 0.125, t = - 5.397, p < 0.001, adjusted R2 = 0.459). CONCLUSIONS Serum ADA levels are independently associated with islet beta cell function in patients with T2D.
Collapse
Affiliation(s)
- Jie Cao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Hong Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Dong-mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| |
Collapse
|