1
|
Zhang Z, Li Y, Wen S, Yang S, Zhu H, Zhou H. Metabolomics Reveals the Impact of Overexpression of Cytosolic Fructose-1,6-Bisphosphatase on Photosynthesis and Growth in Nannochloropsis gaditana. Int J Mol Sci 2024; 25:6800. [PMID: 38928505 PMCID: PMC11204352 DOI: 10.3390/ijms25126800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Nannochloropsis gaditana, a microalga known for its photosynthetic efficiency, serves as a cell factory, producing valuable biomolecules such as proteins, lipids, and pigments. These components make it an ideal candidate for biofuel production and pharmaceutical applications. In this study, we genetically engineered N. gaditana to overexpress the enzyme fructose-1,6-bisphosphatase (cyFBPase) using the Hsp promoter, aiming to enhance sugar metabolism and biomass accumulation. The modified algal strain, termed NgFBP, exhibited a 1.34-fold increase in cyFBPase activity under photoautotrophic conditions. This modification led to a doubling of biomass production and an increase in eicosapentaenoic acid (EPA) content in fatty acids to 20.78-23.08%. Additionally, the genetic alteration activated the pathways related to glycine, protoporphyrin, thioglucosides, pantothenic acid, CoA, and glycerophospholipids. This shift in carbon allocation towards chloroplast development significantly enhanced photosynthesis and growth. The outcomes of this study not only improve our understanding of photosynthesis and carbon allocation in N. gaditana but also suggest new biotechnological methods to optimize biomass yield and compound production in microalgae.
Collapse
Affiliation(s)
- Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (Y.L.); (S.W.); (S.Y.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (Y.L.); (S.W.); (S.Y.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Shuting Wen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (Y.L.); (S.W.); (S.Y.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Shu Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (Y.L.); (S.W.); (S.Y.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (Y.L.); (S.W.); (S.Y.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| |
Collapse
|
2
|
Aoki R, Matsunaga S. A Photosynthetic Animal: A Sacoglossan Sea Slug that Steals Chloroplasts. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ryota Aoki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Sachihiro Matsunaga
- Laboratory of Integrated Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences
| |
Collapse
|
3
|
Affiliation(s)
- Satoko Hosokawa
- Department of Integrated Biosciences, Graduate school of Frontier Sciences, The University of Tokyo
| | - Shigeyuki Kawano
- Functional Biotechnology PJ, Future Center Initiative, The University of Tokyo
| |
Collapse
|
4
|
Uchida H, Mizohata E, Okada S. Docking analysis of models for 4-hydroxy-3-methylbut-2-enyl diphosphate reductase and a ferredoxin from Botryococcus braunii, race B. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:297-301. [PMID: 31819737 PMCID: PMC6879371 DOI: 10.5511/plantbiotechnology.18.0601a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 06/10/2023]
Abstract
The green microalga Botryococcus braunii Showa, which produces large amounts of triterpene hydrocarbons, exclusively uses the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosyntheses, and the terminal enzyme in this pathway, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), is regarded as a light-dependent key regulatory enzyme. In order to investigate the possible association of HDR and ferredoxin in this organism, we constructed tertiary structure models of B. braunii HDR (BbHDR) and one of ferredoxin families in the alga, a photosynthetic electron transport F (BbPETF)-like protein, by using counterparts from E. coli and Chlamydomonas reinhardtii as templates, respectively, and performed docking analysis of these two proteins. After docked models are superimposed onto their counterpart proteins in a non-photosynthetic organism, Plasmodium falciparum, the BbPETF-like protein comes in contact with the backside of BbHDR, which was defined in a previous report (Rekittke et al. 2013), and the distance of the two Fe-S centers is 14.7 Å. This distance is in almost the same level as that for P. falicarum, 12.6 Å. To our knowledge, this is the first model suggesting the possible association of HDR with a ferredoxin in O2-evolving photosynthetic organisms.
Collapse
Affiliation(s)
- Hidenobu Uchida
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo 102-0076, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
5
|
Uchida H, Sumimoto K, Oki T, Nishii I, Mizohata E, Matsunaga S, Okada S. Isolation and characterization of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase gene from Botryococcus braunii, race B. JOURNAL OF PLANT RESEARCH 2018; 131:839-848. [PMID: 29725892 DOI: 10.1007/s10265-018-1039-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 05/27/2023]
Abstract
The B race of a green microalga Botryococcus braunii Kützing produces triterpene hydrocarbons that is a promising source for biofuel. In this algal race, precursors of triterpene hydrocarbons are provided from the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The terminal enzyme of this pathway, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is regarded as one of the key enzymes that affect yields of products in terpene biosynthesis. In order to better understand the MEP pathway of the alga, cDNA and genomic clones of HDR were obtained from B. braunii Showa strain. B. braunii HDR (BbHDR) is encoded on a single copy gene including a 1509-bp open reading frame that was intervened by 6 introns. The exon-intron structure of BbHDR genes did not show clear relation to phylogeny, while its amino acid sequence reflected phyla and classes well. BbHDR sequence was distinctive from that of the HDR protein from Escherichia coli in the residues involved in hydrogen-bond network that surrounds substrate. Introduction of BbHDR cDNA into an E. coli HDR deficient mutant resulted in recovery of its auxotrophy. BbHDR expression level was upregulated from the onset of liquid culture to the 24th day after inoculation with a 2.5-fold increase and retained its level in the subsequent period.
Collapse
Affiliation(s)
- Hidenobu Uchida
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Koremitsu Sumimoto
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Tomoka Oki
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Ichiro Nishii
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo, 102-0076, Japan
- Department of Biological Science, Nara Women's University, Kitauoya, Higashimachi, Nara, Nara, 630-8506, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo, 102-0076, Japan.
| |
Collapse
|