1
|
Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang KC, Omar SV, Reuter A, Perumal T, Horsburgh CR, Murray M, Lange C. Multidrug-resistant tuberculosis. Nat Rev Dis Primers 2024; 10:22. [PMID: 38523140 DOI: 10.1038/s41572-024-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/26/2024]
Abstract
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Fuad Mirzayev
- Global Tuberculosis Programme, WHO, Geneva, Switzerland
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Zarir Udwadia
- Department of Pulmonology, Hinduja Hospital & Research Center, Mumbai, India
| | - Kelly E Dooley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kwok-Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, SAR, China
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Molecular Medicine & Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Anja Reuter
- Sentinel Project on Paediatric Drug-Resistant Tuberculosis, Boston, MA, USA
| | - Tahlia Perumal
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - C Robert Horsburgh
- Department of Epidemiology, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Megan Murray
- Department of Epidemiology, Harvard Medical School, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), TTU-TB, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- Department of Paediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Zhang H, Sun R, Wu Z, Liu Y, Chen M, Huang J, Lv Y, Zhao F, Zhang Y, Li M, Jiang H, Zhan Y, Xu J, Xu Y, Yuan J, Zhao Y, Shen X, Yang C. Spatial pattern of isoniazid-resistant tuberculosis and its associated factors among a population with migrants in China: a retrospective population-based study. Front Public Health 2024; 12:1372146. [PMID: 38510351 PMCID: PMC10951094 DOI: 10.3389/fpubh.2024.1372146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background Isoniazid-resistant, rifampicin-susceptible tuberculosis (Hr-TB) globally exhibits a high prevalence and serves as a potential precursor to multidrug-resistant tuberculosis (MDR-TB). Recognizing the spatial distribution of Hr-TB and identifying associated factors can provide strategic entry points for interventions aimed at early detection of Hr-TB and prevention of its progression to MDR-TB. This study aims to analyze spatial patterns and identify socioeconomic, demographic, and healthcare factors associated with Hr-TB in Shanghai at the county level. Method We conducted a retrospective study utilizing data from TB patients with available Drug Susceptible Test (DST) results in Shanghai from 2010 to 2016. Spatial autocorrelation was explored using Global Moran's I and Getis-Ord G i ∗ statistics. A Bayesian hierarchical model with spatial effects was developed using the INLA package in R software to identify potential factors associated with Hr-TB at the county level. Results A total of 8,865 TB patients with DST were included in this analysis. Among 758 Hr-TB patients, 622 (82.06%) were new cases without any previous treatment history. The drug-resistant rate of Hr-TB among new TB cases in Shanghai stood at 7.20% (622/8014), while for previously treated cases, the rate was 15.98% (136/851). Hotspot areas of Hr-TB were predominantly situated in southwestern Shanghai. Factors positively associated with Hr-TB included the percentage of older adult individuals (RR = 3.93, 95% Crl:1.93-8.03), the percentage of internal migrants (RR = 1.35, 95% Crl:1.15-1.35), and the number of healthcare institutions per 100 population (RR = 1.17, 95% Crl:1.02-1.34). Conclusion We observed a spatial heterogeneity of Hr-TB in Shanghai, with hotspots in the Songjiang and Minhang districts. Based on the results of the models, the internal migrant population and older adult individuals in Shanghai may be contributing factors to the emergence of areas with high Hr-TB notification rates. Given these insights, we advocate for targeted interventions, especially in identified high-risk hotspots and high-risk areas.
Collapse
Affiliation(s)
- Hongyin Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruoyao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zheyuan Wu
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Yueting Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Meiru Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinrong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yixiao Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fei Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, China
| | - Yangyi Zhang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- Shanghai Institutes of Preventive Medicine, Shanghai, China
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Minjuan Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongbing Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yiqiang Zhan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jimin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanzi Xu
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xin Shen
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| |
Collapse
|
3
|
Otchere ID, Morgan PA, Asare P, Osei-Wusu S, Aboagye SY, Yirenkyi SO, Musah AB, Danso EK, Tetteh-Ocloo G, Afum T, Asante-Poku A, Laryea C, Poku YA, Bonsu F, Gagneux S, Yeboah-Manu D. Analysis of drug resistance among difficult-to-treat tuberculosis patients in Ghana identifies several pre-XDR TB cases. Front Microbiol 2023; 13:1069292. [PMID: 36713197 PMCID: PMC9878308 DOI: 10.3389/fmicb.2022.1069292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Resistance to tuberculosis (TB) drugs has become a major threat to global control efforts. Early case detection and drug susceptibility profiling of the infecting bacteria are essential for appropriate case management. The objective of this study was to determine the drug susceptibility profiles of difficult-to-treat (DTT) TB patients in Ghana. Methods Sputum samples obtained from DTT-TB cases from health facilities across Ghana were processed for rapid diagnosis and detection of drug resistance using the Genotype MTBDRplus and Genotype MTBDRsl.v2 from Hain Life science. Results A total of 298 (90%) out of 331 sputum samples processed gave interpretable bands out of which 175 (58.7%) were resistant to at least one drug (ANYr); 16.8% (50/298) were isoniazid-mono-resistant (INHr), 16.8% (50/298) were rifampicin-mono-resistant (RIFr), and 25.2% (75/298) were MDR. 24 (13.7%) of the ANYr were additionally resistant to at least one second line drug: 7.4% (2 RIFr, 1 INHr, and 10 MDR samples) resistant to only FQs and 2.3% (2 RIFr, 1 INHr, and 1 MDR samples) resistant to AMG drugs kanamycin (KAN), amikacin (AMK), capreomycin (CAP), and viomycin (VIO). Additionally, there were 4.0% (5 RIFr and 2 MDR samples) resistant to both FQs and AMGs. 81 (65.6%) out of 125 INH-resistant samples including INHr and MDR had katG-mutations (MT) whereas 15 (12%) had inhApro-MT. The remaining 28 (22.4%) had both katG and inhA MT. All the 19 FQ-resistant samples were gyrA mutants whereas the 10 AMGs were rrs (3), eis (3) as well as rrs, and eis co-mutants (4). Except for the seven pre-XDR samples, no sample had eis MT. Conclusion The detection of several pre-XDR TB cases in Ghana calls for intensified drug resistance surveillance and monitoring of TB patients to, respectively, ensure early diagnosis and treatment compliance.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Portia Abena Morgan
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Institute for Environment and Sanitation Studies, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emelia Konadu Danso
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Yaw Adusi Poku
- National Tuberculosis Control Program, Ghana Health Service, Accra, Ghana
| | - Frank Bonsu
- National Tuberculosis Control Program, Ghana Health Service, Accra, Ghana
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Zheng Y, Xia H, Bao X, Zhao B, He P, Zhao Y. Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium Tuberculosis by Droplet Digital PCR. Infect Drug Resist 2022; 15:6245-6254. [PMID: 36329987 PMCID: PMC9624153 DOI: 10.2147/idr.s381097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose The drug resistance of Mycobacterium tuberculosis constitutes a major public health threat. Existing approaches make it challenging to detect low levels of drug-resistant TB, also known as heteroresistance (HR), in a population. The recently found droplet digital PCR (ddPCR) is a sensitive method for determining the precise amount of nucleic acid in a sample. We used ddPCR to test the Mycobacterium tuberculosis heteroresistance because it delivers more exact quantitative data without the need for a reference curve. Patients and Methods A TaqMan-MGB probe mutation detection assay was developed in order to determine the mutant and wild-type sequences of the isoniazid resistance katG (315) gene. We produced heteroresistant MTB combinations, which were subsequently identified by ddPCR, qPCR, and MeltPro/INH. In addition, 21 clinical sputum samples with positive smears were used to validate each method’s capacity to determine HR in sputum. Results We discovered that ddPCR can detect mutant sequences in as few as 0.01% of a combination. DeepMelt TB/INH, which is less sensitive in comparison, cannot detect HR with high resolution and requires a mutation rate of 50% to identify. qPCR likewise has a high resolution of 0.02%, but unlike ddPCR, it cannot determine the exact number of mutations. Our assay is applicable to sputum as well. ddPCR found a katG 315 substitution in two sputums with extremely low values of HR (0.26% and 0.14%). In 21 samples of clinical sputum, the HR prevalence of INH was 9.5%. Conclusion This work demonstrates that a well-designed ddPCR HR detection test can detect low levels of HR with high accuracy and consistency and gives new information for the clinical diagnosis of drug resistance.
Collapse
Affiliation(s)
- Yang Zheng
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xundi Bao
- Laboratory Department, Anhui Chest Hospital, Anhui, People’s Republic of China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ping He
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China,Correspondence: Yanlin Zhao, National Center for TB Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District,Beijing, 102206, People’s Republic of China, Tel +86-10-58900517, Fax +86-10-58900556, Email
| |
Collapse
|
5
|
Reta MA, Tamene BA, Abate BB, Mensah E, Maningi NE, Fourie PB. Mycobacterium tuberculosis Drug Resistance in Ethiopia: An Updated Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100300. [PMID: 36288041 PMCID: PMC9611116 DOI: 10.3390/tropicalmed7100300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Tuberculosis (TB) remains a significant global public health issue, despite advances in diagnostic technologies, substantial global efforts, and the availability of effective chemotherapies. Mycobacterium tuberculosis, a species of pathogenic bacteria resistant to currently available anti-TB drugs, is on the rise, threatening national and international TB-control efforts. This systematic review and meta-analysis aims to estimate the pooled prevalence of drug-resistant TB (DR-TB) in Ethiopia. Materialsand Methods: A systematic literature search was undertaken using PubMed/MEDLINE, HINARI, the Web of Science, ScienceDirect electronic databases, and Google Scholar (1 January 2011 to 30 November 2020). After cleaning and sorting the records, the data were analyzed using STATA 11. The study outcomes revealed the weighted pooled prevalence of any anti-tuberculosis drug resistance, any isoniazid (INH) and rifampicin (RIF) resistance, monoresistance to INH and RIF, and multidrug-resistant TB (MDR-TB) in newly diagnosed and previously treated patients with TB. Results: A total of 24 studies with 18,908 patients with TB were included in the final analysis. The weighted pooled prevalence of any anti-TB drug resistance was 14.25% (95% confidence interval (CI): 7.05–21.44%)), whereas the pooled prevalence of any INH and RIF resistance was found in 15.62% (95%CI: 6.77–24.47%) and 9.75% (95%CI: 4.69–14.82%) of patients with TB, respectively. The pooled prevalence for INH and RIF-monoresistance was 6.23% (95%CI: 4.44–8.02%) and 2.33% (95%CI: 1.00–3.66%), respectively. MDR-TB was detected in 2.64% (95%CI: 1.46–3.82%) of newly diagnosed cases and 11.54% (95%CI: 2.12–20.96%) of retreated patients with TB, while the overall pooled prevalence of MDR-TB was 10.78% (95%CI: 4.74–16.83%). Conclusions: In Ethiopia, anti-tuberculosis drug resistance is widespread. The estimated pooled prevalence of INH and RIF-monoresistance rates were significantly higher in this review than in previous reports. Moreover, MDR-TB in newly diagnosed cases remained strong. Thus, early detection of TB cases, drug-resistance testing, proper and timely treatment, and diligent follow-up of TB patients all contribute to the improvement of DR-TB management and prevention. Besides this, we urge that a robust, routine laboratory-based drug-resistance surveillance system be implemented in the country.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof 0084, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia P.O. Box 400, Ethiopia
- Correspondence:
| | - Birhan Alemnew Tamene
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Biruk Beletew Abate
- Department of Nursing, College of Health Sciences, Woldia University, Woldia P.O. Box 400, Ethiopia or
| | - Eric Mensah
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof 0084, South Africa
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban 4041, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof 0084, South Africa
| |
Collapse
|
6
|
Li Y, Shi J, Song W, Shao Y, Zhu L, Chen C. A retrospective Cohort Study on the Treatment Outcomes and Genotyping of Isoniazid-Resistant Tuberculosis Patients in Eastern China. J Glob Antimicrob Resist 2022; 30:335-339. [PMID: 35817264 DOI: 10.1016/j.jgar.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Isoniazid resistance might be overlooked due to the priority of detection of rifampicin-resistant tuberculosis. It was urgent to reveal the current situation of isoniazid-resistant tuberculosis (HR-TB), including unfavorable outcomes and bacterial factors. METHODS A retrospective cohort study was undertaken by enrolling 120 HR-TB and 193 drug-sensitive tuberculosis (DS-TB). 24 loci MIRU-VNTR and Spoligotyping were adopted for genotyping. RESULTS We found 106 (88.3%) HR-TB and 165(85.5%) DS-TB were treated with the first-line drugs. Meanwhile, 12 (10.0%) patients of the HR-TB and 7 (3.63%) patients of the DS-TB involved adverse treatment outcomes, respectively. (χ2 =5.271, P=0.028). A total of 78 DNAs from HR Mycobacterium tuberculosis and 114 DNAs from DS Mycobacterium tuberculosis were available for MIRU-VNTR and Spoligotyping. The clustering rate was 17.9% (14/78) for HR-TB and 16.7% (19/114) for DS-TB, and reached no significant difference (χ2 =0.05, P=0.8171). The Beijing family strains accounted for 83.7% (65/78) among HR-TB, 80.0% (91/114) among DS-TB (χ2=0.37, P=0.5407). The adverse treatment outcomes for HR-TB all occurred in patients infected with Beijing family strains (13.8%), but no difference was found between Beijing and non-Beijing genotypes (P=0.342). CONCLUSION the adverse outcome of HR-TB was significantly higher than that of DS-TB, and most of the HR-TB patients were receiving a standard first-line regimen. Although the clustering rate and Beijing genotype distribution among HR-TB and DS-TB showed no significant difference, Beijing genotype was the dominant genotype and the proportion of Beijing genotype was only slightly high among HR-TB than DS-TB.
Collapse
Affiliation(s)
- Yishu Li
- Center for Disease Control and Prevention of Wuzhong District, Suzhou, Jiangsu Province, PR China; Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province, PR China
| | - Jinyan Shi
- The Fourth Hospital of Lianyungang City, Lianyungang, Jiangsu Province, PR China
| | - Wenlei Song
- Center for Disease Control and Prevention of Kunshan, Suzhou, Jiangsu Province, PR China
| | - Yan Shao
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, PR China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, PR China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Krittanan P, Srimanote P, Thawornwan U, Chaiprasert A, Tapchaisri P, Tongtawe P. Spoligotype-based population structure and isoniazid-resistance gene mutation of Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist 2022; 30:319-325. [PMID: 35732265 DOI: 10.1016/j.jgar.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES The present study aims to investigate the population structure of Thai Mycobacterium tuberculosis (MTB) isolates, the anti-tuberculosis (TB) drug resistance and to determine the most frequent genetic mutations conferring the isoniazid (INH) resistance. METHODS Genomic DNA from 287 MTB clinical isolates were extracted and used for: spoligotyping, amplification and sequencing analysis of region of different (RD) 105, and the INH-resistance (IR) associated genes, inhA, katG and oxyR-ahpC. RESULTS Eighty-one clinical isolates were resistant to at least one first-line drug, 53 of these were resistant to INH. All strains were classified into three lineages based on their spoligotypes: East-Asia (EA)/Beijing, Indo-Oceanic (IO) and Euro-American (EuA). EA and IO lineages revealed a strong association with anti-TB drug resistance (p=0.005 and 0.013, respectively). A total of 33 mutations were found among IR isolates, which for 28 (84.8%), 3 (9.1%) and 2 (6.1%) occurred in katG, inhA, and oxyR-ahpC genes, respectively. Moreover, the most commom mutations found were 54.7% of IR presented Ser315Thr at katG (54.7%) and C-15T at inhA (15.1%) presented. This result suggests the involvement of other genetic markers or other mechanisms of resistance. CONCLUSION This study provides information about strains diversity, drug resistance profiles and their possible association. EA and IO lineages were predominant in Thailand, and they were highly associated with anti-TB drug resistance. Testing two mutation including katGSer315Thr and inhA-15C→T could detect 68% of the IR strains.
Collapse
Affiliation(s)
- Peerapat Krittanan
- Graduate Programme in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong-Luang, Pathumthani 12120, Thailand
| | - Potjanee Srimanote
- Graduate Programme in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong-Luang, Pathumthani 12120, Thailand
| | - Unchana Thawornwan
- Microbiology Laboratory, Bamrasnaradura Infectious Diseases Institute, Tiwanan Road. Nonthaburi 11000, Thailand
| | - Angkana Chaiprasert
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pramaun Tapchaisri
- Graduate Programme in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong-Luang, Pathumthani 12120, Thailand
| | - Pongsri Tongtawe
- Graduate Programme in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong-Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
8
|
Chandrasingh S, Nair S. Isoniazid resistance in patients with Extrapulmonary Tuberculosis using line probe assay in a private multispecialty hospital in Bangalore, India. Indian J Med Microbiol 2022; 40:303-305. [PMID: 35216871 DOI: 10.1016/j.ijmmb.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/05/2022]
Abstract
We aimed to study the rate of isoniazid (INH) resistance in Extrapulmonary Tuberculosis samples from a private care setting. A Line probe assay was performed on 74 culture isolates of Mycobacterium tuberculosis or directly on extrapulmonary samples received in our laboratory from 2018 to 2021. The INH mono-resistance among these extrapulmonary samples was 6.7%. (5 among 74) (95% CI: 1.04%-12.48%) Resistance to rifampicin was not detected. Increasing the availability and leveraging public private partnerships in hospitals for universal testing for INH resistance may increase detection of INH monoresistance in EP-TB and improve the strategy for TB elimination.
Collapse
Affiliation(s)
- Sindhulina Chandrasingh
- Department of Microbiology, Bangalore Baptist Hospital, Bellary Road, Hebbal, Bangalore 560005, Karnataka, India.
| | - Sreeja Nair
- Department of Microbiology, Bangalore Baptist Hospital, Bellary Road, Hebbal, Bangalore 560005, Karnataka, India
| |
Collapse
|
9
|
Kodera T, Yamaguchi T, Fukushima Y, Kobayashi K, Takarada Y, Chizimu JY, Nakajima C, Solo ES, Lungu PS, Kawase M, Suzuki Y. Rapid and Simple Detection of Isoniazid-Resistant Mycobacterium tuberculosis Utilizing a DNA Chromatography-Based Technique. Jpn J Infect Dis 2020; 74:214-219. [PMID: 33132303 DOI: 10.7883/yoken.jjid.2020.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite the availability of anti-tuberculosis drugs, the treatment of tuberculosis has been complicated by drug-resistant tuberculosis. The early detection of drug resistance makes early treatment possible. However, the available tools are mainly for rifampicin resistance detection, and the existing isoniazid resistance detection method is expensive, highly technical, and complicated, making it unsustainable for use in developing nations. This study aimed to develop a simple, rapid, and low-cost diagnostic kit for isoniazid-resistant tuberculosis using the single-stranded tag hybridization method to target an isoniazid resistance-conferring mutation. Specificity and sensitivity were assessed using DNA extracted from 49 isoniazid-resistant and 41 isoniazid-susceptible Mycobacterium tuberculosis clinical isolates cultured in mycobacterial growth indicator tubes. Positive signals were observed on mutant and wild-type lines with 100% sensitivity and specificity compared with Sanger sequencing results. In contrast, no positive signal was observed for non-tuberculosis mycobacteria. The detection limit of this method was 103 CFU or less. The STH-PAS system for isoniazid-resistant M. tuberculosis detection developed in this study offers a better alternative to conventional phenotypic isoniazid resistance determination, which will be of both clinical and epidemiological significance in resource-limited nations.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Yamweka Chizimu
- Hokkaido University Research Center for Zoonosis Control, Japan.,Zambia National Public Health Institute, Ministry of Health, Zambia
| | - Chie Nakajima
- Hokkaido University Research Center for Zoonosis Control, Japan.,Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Japan
| | - Eddie Samuneti Solo
- Department of Pathology and Microbiology, University Teaching Hospital Ministry of Health, Zambia
| | | | | | - Yasuhiko Suzuki
- Hokkaido University Research Center for Zoonosis Control, Japan.,Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Japan
| |
Collapse
|
10
|
Diacon A, Miyahara S, Dawson R, Sun X, Hogg E, Donahue K, Urbanowski M, De Jager V, Fletcher CV, Hafner R, Swindells S, Bishai W. Assessing whether isoniazid is essential during the first 14 days of tuberculosis therapy: a phase 2a, open-label, randomised controlled trial. LANCET MICROBE 2020; 1:e84-e92. [PMID: 33834177 DOI: 10.1016/s2666-5247(20)30011-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Clinical studies suggest that isoniazid contributes rapid bacterial killing during the initial two days of tuberculosis treatment but that isoniazid's activity declines significantly after day three. We conducted a 14-day phase IIa open label, randomized trial to assess the essentiality of isoniazid in standard tuberculosis therapy. Methods A total of 69 adults with newly diagnosed sputum-positive tuberculosis from the South African Western Cape region were enrolled and randomized to a four-arm parallel assignment model. Participants were followed for 14 days as inpatients at either the University of Cape Town Lung Institute or at the TASK Applied Science clinical research organization. All arms received standard daily rifampicin, ethambutol, and pyrazinamide but differed as follows: isoniazid only on days one and two (n=17), isoniazid on days one and two then moxifloxacin on days three through 14 (n=16), no isoniazid (n=18), and a control group that received isoniazid for all 14 days (standard therapy, n=18). The primary endpoint was the rate of colony forming unit (CFU) decline during the first 14 days of treatment. Results For 62 participants analyzed, the initial 14-day mean daily fall in log10 CFU (95% CI) was 0·14 (0·11, 0·18) for participants receiving isoniazid for two days only; 0·13 (0·09, 0·17) for participants receiving isoniazid for two days followed by moxifloxacin; 0·12 (0·08, 0·15) for those not receiving isoniazid; and 0·13 (0·09, 0·16) for the standard therapy group. Conclusions The 14 day EBA for the combination rifampicin, ethambutol, and pyrazinamide was not significantly changed by the addition of isoniazid for the first two days or for the first 14 days of treatment. In a post hoc analysis, significantly higher day-two EBAs were observed for all groups among participants with higher baseline sputum CFUs. Our finding that INH does not contribute to EBA suggests that INH could be replaced with another drug during standard treatment to improve efficacy and decrease rates of resistance to first-line drugs. (Funded by the NIH AIDS Clinical Trial Groups and NIH; A5307 ClinicalTrials.gov number, NCT01589497).
Collapse
Affiliation(s)
- Andreas Diacon
- Division of Physiology, Department of Medical Biochemistry, Stellenbosch University, Cape Town, South Africa.,Task Applied Science, Tuberculosis Clinical Research Centre, Bellville, Cape Town, South Africa
| | - Sachiko Miyahara
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rodney Dawson
- Task Applied Science, Tuberculosis Clinical Research Centre, Bellville, Cape Town, South Africa.,University of Cape Town Lung Institute and Division of Pulmonology, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Xin Sun
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Evelyn Hogg
- Social & Scientific Systems, Inc., Silver Spring, Maryland, USA
| | - Kathleen Donahue
- Frontier Science & Technology Research Foundation Inc., Amherst, New York, USA
| | - Michael Urbanowski
- Center for TB Research, Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Veronique De Jager
- Task Applied Science, Tuberculosis Clinical Research Centre, Bellville, Cape Town, South Africa
| | | | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - William Bishai
- Center for TB Research, Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Edwards BD, Edwards J, Cooper R, Kunimoto D, Somayaji R, Fisher D. Incidence, treatment, and outcomes of isoniazid mono-resistant Mycobacterium tuberculosis infections in Alberta, Canada from 2007-2017. PLoS One 2020; 15:e0229691. [PMID: 32155169 PMCID: PMC7064215 DOI: 10.1371/journal.pone.0229691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Isoniazid resistant Mycobacterium tuberculosis (Hr-TB) is the most frequently encountered TB resistance phenotype in North America but limited data exist on the effectiveness of current therapeutic regimens. Ineffective treatment of Hr-TB increases patient relapse and anti-mycobacterial resistance, specifically MDR-TB. We undertook a multi-centre, retrospective review of culture-positive Hr-TB patients in Alberta, Canada (2007-2017). We assessed incidence and treatment outcomes, with a focus on fluoroquinolone (FQ)-containing regimens, to understand the risk of unsuccessful outcomes. Rates of Hr-TB were determined using the mid-year provincial population and odds of unsuccessful treatment was calculated using a Fisher's Exact test. One hundred eight patients of median age 37 years (IQR: 26-50) were identified with Hr-TB (6.3%), 98 of whom were able to be analyzed. Seven percent reported prior treatment. Rate of foreign birth was high (95%), but continent of origin did not predict Hr-TB (p = 0.47). Mean compliance was 95% with no difference between FQ and non-FQ regimens (p = 1.00). Treatment success was high (91.8%). FQ-containing regimens were frequently initiated (70%), with no difference in unsuccessful outcomes compared to non-FQ-containing regimens (5.8% vs. 13.8%, OR 0.4, 95% CI 0.1-2.3, p = 0.23). Only one patient (1%) utilizing a less common non-FQ-based regimen including two months of pyrazinamide developed secondary multidrug resistance. Unsuccessful treatment was low (<10%) relative to comparable literature (~15%) and showed similar outcomes for FQ and non-FQ-based regimens and no deficit to those using intermittent fluoroquinolones in the continuation phase of treatment. Our findings are similar to recent data, however prospective, randomized trials of adequate power are needed to determine the optimal treatment for Hr-TB.
Collapse
Affiliation(s)
- Brett D. Edwards
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Edwards
- Pharmacy Services, Alberta Health Services, Calgary, Alberta, Canada
| | - Ryan Cooper
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Dina Fisher
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Detection of Second Line Drug Resistance among Drug Resistant Mycobacterium Tuberculosis Isolates in Botswana. Pathogens 2019; 8:pathogens8040208. [PMID: 31661825 PMCID: PMC6963291 DOI: 10.3390/pathogens8040208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022] Open
Abstract
The emergence and transmission of multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis (M.tb) strains is a threat to global tuberculosis (TB) control. The early detection of drug resistance is critical for patient management. The aim of this study was to determine the proportion of isolates with additional second-line resistance among rifampicin and isoniazid resistant and MDR-TB isolates. A total of 66 M.tb isolates received at the National Tuberculosis Reference Laboratory between March 2012 and October 2013 with resistance to isoniazid, rifampicin or both were analyzed in this study. The genotypes of the M.tb isolates were determined by spoligotyping and second-line drug susceptibility testing was done using the Hain Genotype MTBDRsl line probe assay version 2.0. The treatment outcomes were defined according to the Botswana national and World Health Organization (WHO) guidelines. Of the 57 isolates analyzed, 33 (58%) were MDR-TB, 4 (7%) were additionally resistant to flouroquinolones and 3 (5%) were resistant to both fluoroquinolones and second-line injectable drugs. The most common fluoroquinolone resistance-conferring mutation detected was gyrA A90V. All XDR-TB cases remained smear or culture positive throughout the treatment. Our study findings indicate the importance of monitoring drug resistant TB cases to ensure rapid detection of second-line drug resistance.
Collapse
|