1
|
Olivença DV, Davis JD, Kumbale CM, Zhao CY, Brown SP, McCarty NA, Voit EO. Mathematical models of cystic fibrosis as a systemic disease. WIREs Mech Dis 2023; 15:e1625. [PMID: 37544654 PMCID: PMC10843793 DOI: 10.1002/wsbm.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Conan Y. Zhao
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samuel P. Brown
- Department of Biological Sciences, Georgia Tech and Emory University, Atlanta, Georgia
| | - Nael A. McCarty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| |
Collapse
|
2
|
Antibiotics Drive Expansion of Rare Pathogens in a Chronic Infection Microbiome Model. mSphere 2022; 7:e0031822. [PMID: 35972133 PMCID: PMC9599657 DOI: 10.1128/msphere.00318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic (long-lasting) infections are globally a major and rising cause of morbidity and mortality. Unlike typical acute infections, chronic infections are ecologically diverse, characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-associated commensals. To address the challenge of chronic infection microbiomes, we focus on a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for decades despite frequent exposure to antibiotics. Epidemiological analyses point to conflicting results on the benefits of antibiotic treatment yet are confounded by the dependency of antibiotic exposures on prior pathogen presence, limiting their ability to draw causal inferences on the relationships between antibiotic exposure and pathogen dynamics. To address this limitation, we develop a synthetic infection microbiome model representing CF metacommunity diversity and benchmark on clinical data. We show that in the absence of antibiotics, replicate microbiome structures in a synthetic sputum medium are highly repeatable and dominated by oral commensals. In contrast, challenge with physiologically relevant antibiotic doses leads to substantial community perturbation characterized by multiple alternate pathogen-dominant states and enrichment of drug-resistant species. These results provide evidence that antibiotics can drive the expansion (via competitive release) of previously rare opportunistic pathogens and offer a path toward microbiome-informed conditional treatment strategies. IMPORTANCE We develop and clinically benchmark an experimental model of the cystic fibrosis (CF) lung infection microbiome to investigate the impacts of antibiotic exposures on chronic, polymicrobial infections. We show that a single experimental model defined by metacommunity data can partially recapitulate the diversity of individual microbiome states observed across a population of people with CF. In the absence of antibiotics, we see highly repeatable community structures, dominated by oral microbes. Under clinically relevant antibiotic exposures, we see diverse and frequently pathogen-dominated communities, and a nonevolutionary enrichment of antimicrobial resistance on the community scale, mediated by competitive release. The results highlight the potential importance of nonevolutionary (community-ecological) processes in driving the growing global crisis of increasing antibiotic resistance.
Collapse
|
3
|
Thaulow CM, Blix HS, Nilsen RM, Eriksen BH, Wathne JS, Berild D, Harthug S. Antibiotic Use in Children Before, During and After Hospitalization. Pharmacoepidemiol Drug Saf 2022; 31:749-757. [PMID: 35384111 PMCID: PMC9320961 DOI: 10.1002/pds.5438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/05/2022]
Abstract
Purpose To investigate ambulatory antibiotic use in children during 1 year before and 1 year after in‐hospital antibiotic exposure compared to children from the general population that had not received antibiotics in‐hospital. Methods Explorative data‐linkage cohort study from Norway of children aged 3 months to 17 years. One group had received antibiotics in‐Hospital (H+), and one group had not received antibiotics in‐hospital (H‐). The H+ group was recruited during admission in 2017. Using the Norwegian Population Registry, 10 children from the H‐ group were matched with one child from the H+ group according to county of residence, age and sex. We used the Norwegian Prescription Database to register antibiotic use 1 year before and 1 year after the month of hospitalisation. Results Of 187 children in the H+ group, 83 (44%) received antibiotics before hospitalisation compared to 288/1870 (15%) in the H‐ group, relative risk (RR) 2.88 (95% confidence interval 2.38–3.49). After hospitalisation, 86 (46%) received antibiotics in the H+ group compared to 311 (17%) in the H‐ group, RR 2.77 (2.30–3.33). Comorbidity‐adjusted RR was 2.30 (1.84–2.86) before and 2.25 (1.81–2.79) after hospitalisation. RR after hospitalisation was 2.55 (1.99–3.26) in children 3 months‐2 years, 4.03 (2.84–5.71) in children 3–12 years and 2.07 (1.33–3.20) in children 13–17 years. Conclusions Children exposed to antibiotics in‐hospital had two to three times higher risk of receiving antibiotics in ambulatory care both before and after hospitalisation. The link between in‐hospital and ambulatory antibiotic exposure should be emphasised in future antibiotic stewardship programs.
Collapse
Affiliation(s)
- Christian Magnus Thaulow
- Department of Clinical Science, University of Bergen, Norway.,Department of Paediatrics and Adolscence Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hege Salvesen Blix
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Drug Statistics, Norwegian Institute of Public Health, Oslo, Norway
| | - Roy Miodini Nilsen
- Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Beate Horsberg Eriksen
- Department of Paediatrics and Adolscence Medicine, Ålesund hospital, Ålesund, Norway.,Clinical Research Unit, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jannicke Slettli Wathne
- Department of Quality and Development, Hospital Pharmacies Enterprises in Western Norway, Bergen, Norway
| | - Dag Berild
- Department of Clinical Medicine, University of Oslo, Oslo
| | - Stig Harthug
- Department of Clinical Science, University of Bergen, Norway.,Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Acosta N, Thornton CS, Surette MG, Somayaji R, Rossi L, Rabin HR, Parkins MD. Azithromycin and the microbiota of cystic fibrosis sputum. BMC Microbiol 2021; 21:96. [PMID: 33784986 PMCID: PMC8008652 DOI: 10.1186/s12866-021-02159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Azithromycin is commonly prescribed drug for individuals with cystic fibrosis (CF), with demonstrated benefits in reducing lung function decline, exacerbation occurrence and improving nutrition. As azithromycin has antimicrobial activity against components of the uncultured microbiome and increasingly the CF microbiome is implicated in disease pathogenesis – we postulated azithromycin may act through its manipulation. Herein we sought to determine if the CF microbiome changed following azithromycin use and if clinical benefit observed during azithromycin use associated with baseline community structure. Results Drawing from a prospectively collected biobank we identified patients with sputum samples prior to, during and after initiating azithromycin and determined the composition of the CF microbial community by sequencing the V3-V4 region of the 16S rRNA gene. We categorized patients as responders if their rate of lung function decline improved after azithromycin initiation. Thirty-eight adults comprised our cohort, nine who had not utilized azithromycin in at least 3 years, and 29 who were completely naïve. We did not observe a major impact in the microbial community structure of CF sputum in the 2 years following azithromycin usage in either alpha or beta-diversity metrics. Seventeen patients (45%) were classified as Responders – demonstrating reduced lung function decline after azithromycin. Responders who were naïve to azithromycin had a modest clustering effect distinguishing them from those who were non-Responders, and had communities enriched with several organisms including Stenotrophomonas, but not Pseudomonas. Conclusions Azithromycin treatment did not associate with subsequent large changes in the CF microbiome structure. However, we found that baseline community structure associated with subsequent azithromycin response in CF adults. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02159-5.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Christina S Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada. .,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|