1
|
Zhao L, Qi Z, Yi L, Li J, Cui Y, Ur Rehman F, Yang J, Liu J, Li Y, Zhang J. The interaction between gut microbiota and flavonoid extract from Smilax glabra Roxb. and its potent alleviation of fatty liver. Food Funct 2021; 12:7836-7850. [PMID: 34235516 DOI: 10.1039/d1fo00727k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty liver is associated with intestinal microbiota dysbiosis and low-grade chronic inflammation. Herein we report the interaction of the flavonoid extract from Smilax glabra Roxb. (FSGR) with gut microbiota. Then, FSGR's function of modulating microbiota in a rat model of high-fat diet (HFD) induced fatty liver has been explored. These investigations indicated that the main compound in FSGR, such as astilbin and its isomers, could be metabolized to aglycone, while further splitting resulted in some phenolic acid compounds through a redox reaction. The data obtained clearly showed that FSGR not only alleviated the steatosis degree of liver cells and modulated the contents of short chain fatty acids (SCFAs) in the intestinal tract, but also reversed gut dysbiosis induced by HFD as prognosticated by the decreased ratio of Firmicutes/Bacteroidetes (F/B) and altered gene expression. The results demonstrated that FSGR probably could be used as a prebiotic agent to impede gut dysbiosis and fatty liver-related metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Li YY, Cao CY, Zhou YL, Nie YQ, Cao J, Zhou YJ. The roles and interaction of FXR and PPARs in the pathogenesis of nonalcoholic fatty liver disease. Arab J Gastroenterol 2020; 21:162-168. [DOI: 10.1016/j.ajg.2020.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/05/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
|
3
|
Mohamed DA, Fouda KA, Mohamed RS. <i>In vitro</i> Anticancer Activity of Quinoa and Safflower Seeds and Their Preventive Effects on Non-alcoholic Fatty Liver. Pak J Biol Sci 2020; 22:383-392. [PMID: 31930826 DOI: 10.3923/pjbs.2019.383.392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is not only the most common cause of liver diseases in humans but also it may complicate and become a risk factor for liver cancer. The present work aimed to evaluate the anticancer activity (in vitro) of quinoa and safflower seeds powder and their beneficial effects against NAFLD (in vivo). MATERIALS AND METHODS Proximate analysis, fatty acids profile, total phenolic and phytic acid of quinoa and safflower seeds were assessed. Also their anticancer activities (in vitro) against liver cancer were evaluated. The preventive effect of both seeds on NAFLD was evaluated using twenty four male rats. NAFLD was induced in rats by high fructose diet (HFD) for 4 weeks. The effects of HFD and HFD supplemented with 20% quinoa or safflower powder on plasma and liver lipids, lipid peroxidation, total protein, albumin as well as liver and kidney functions were determined. RESULTS Quinoa seeds powder was promising in cytotoxicity against hepatocarcinoma cell line HEPG2 (IC50 was 14.6 μg). Feeding rats on HFD produced dyslipidemia and significant increase in liver functions and lipid peroxidation with significant elevation in liver triglycerides and total cholesterol. Quinoa and safflower seeds powder produced improvement in the biochemical parameters with different degrees. CONCLUSION Quinoa and safflower seeds powder possessed cytotoxicity against hepatocarcinoma cell line HEPG2 and afford hepato-protection against NAFLD.
Collapse
|
4
|
|
5
|
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis. Inflammation 2019; 42:1056-1070. [PMID: 30737662 DOI: 10.1007/s10753-019-00967-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Somaia A Nada
- Department of Pharmacology and Toxicology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Róvero Costa M, Leite Garcia J, Cristina Vágula de Almeida Silva C, Junio Togneri Ferron A, Valentini Francisqueti-Ferron F, Kurokawa Hasimoto F, Schmitt Gregolin C, Henrique Salomé de Campos D, Roberto de Andrade C, Dos Anjos Ferreira AL, Renata Corrêa C, Moreto F. Lycopene Modulates Pathophysiological Processes of Non-Alcoholic Fatty Liver Disease in Obese Rats. Antioxidants (Basel) 2019; 8:E276. [PMID: 31387231 PMCID: PMC6720442 DOI: 10.3390/antiox8080276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The higher consumption of fat and sugar are associated with obesity development and its related diseases such as non-alcoholic fatty liver disease (NAFLD). Lycopene is an antioxidant whose protective potential on fatty liver degeneration has been investigated. The aim of this study was to present the therapeutic effects of lycopene on NAFLD related to the obesity induced by a hypercaloric diet. Methods: Wistar rats were distributed in two groups: Control (Co, n = 12) and hypercaloric (Ob, n = 12). After 20 weeks, the animals were redistributed into the control group (Co, n = 6), control group supplemented with lycopene (Co+Ly, n = 6), obese group (Ob, n = 6), and obese group supplemented with lycopene (Ob+Ly, n = 6). Ob groups also received water + sucrose (25%). Animals received lycopene solution (10 mg/kg/day) or vehicle (corn oil) via gavage for 10 weeks. Results: Animals which consumed the hypercaloric diet had higher adiposity index, increased fasting blood glucose, hepatic and blood triglycerides, and also presented in the liver macro and microvesicular steatosis, besides elevated levels of tumor necrosis factor-α (TNF-α). Lycopene has shown therapeutic effects on blood and hepatic lipids, increased high-density lipoprotein cholesterol (HDL), mitigated TNF-α, and malondialdehyde (MDA) and further improved the hepatic antioxidant capacity. Conclusion: Lycopene shows therapeutic potential to NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fernando Moreto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil
| |
Collapse
|
7
|
Liu J, Tang T, Wang GD, Liu B. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease. Biosci Rep 2019; 39:BSR20181722. [PMID: 31064820 PMCID: PMC6629946 DOI: 10.1042/bsr20181722] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background: As one of the most common liver disorders worldwide, non-alcoholic fatty liver disease (NAFLD) begins with the abnormal accumulation of triglyceride (TG) in the liver. Long non-coding RNA-H19 was reported to modulate hepatic metabolic homeostasis in NAFLD. However, its molecular mechanism of NAFLD was not fully clear.Methods:In vitro and in vivo models of NAFLD were established by free fatty acid (FFA) treatment of hepatocytes and high-fat feeding mice, respectively. Hematoxylin and Eosin (H&E) and Oil-Red O staining detected liver tissue morphology and lipid accumulation. Immunohistochemistry (IHC) staining examined peroxisome proliferator-activated receptor γ (PPARγ) level in liver tissues. ELISA assay assessed TG secretion. Luciferase assay and RNA pull down were used to validate regulatory mechanism among H19, miR-130a and PPARγ. The gene expression in hepatocytes and liver tissues was detected by quantitative real-time PCR (qRT-PCR) and Western blotting.Results: H19 and PPARγ were up-regulated, while miR-130a was down-regulated in NAFLD mouse and cellular model. H&E and Oil-Red O staining indicated an increased lipid accumulation. Knockdown of H19 inhibited steatosis and TG secretion in FFA-induced hepatocytes. H19 could bind to miR-130a, and miR-130a could directly inhibit PPARγ expression. Meanwhile, miR-130a inhibited lipid accumulation by down-regulating NAFLD-related genes PPARγ, SREBP1, SCD1, ACC1 and FASN. Overexpression of miR-130a and PPARγ antagonist GW9662 inhibited lipogenesis and TG secretion, and PPARγ agonist GW1929 reversed this change induced by miR-130a up-regulation.Conclusion: Knockdown of H19 alleviated hepatic lipogenesis via directly regulating miR-130a/PPARγ axis, which is a novel mechanistic role of H19 in the regulation of NAFLD.
Collapse
Affiliation(s)
- Jun Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Tao Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Guo-Dong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, School of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| | - Bo Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| |
Collapse
|
8
|
Pittala S, Krelin Y, Kuperman Y, Shoshan-Barmatz V. A Mitochondrial VDAC1-Based Peptide Greatly Suppresses Steatosis and NASH-Associated Pathologies in a Mouse Model. Mol Ther 2019; 27:1848-1862. [PMID: 31375359 DOI: 10.1016/j.ymthe.2019.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatosis and non-alcoholic steatohepatitis (NASH) are liver pathologies characterized by severe metabolic alterations due to fat accumulation that lead to liver damage, inflammation, and fibrosis. We demonstrate that the voltage-dependent anion channel 1 (VDAC1)-based peptide R-Tf-D-LP4 arrested steatosis and NASH progression, as produced by a high-fat diet (HFD-32) in a mouse model, and reversed liver pathology to a normal-like state. VDAC1, a multi-functional mitochondrial protein, regulates cellular metabolic and energetic functions and apoptosis and interacts with many proteins. R-Tf-D-LP4 treatment eliminated hepatocyte ballooning degeneration, inflammation, and liver fibrosis associated with steatosis, NASH, and hepatocarcinoma, and it restored liver pathology-associated enzyme and glucose levels. Peptide treatment affected carbohydrate and lipid metabolism, increasing the expression of enzymes and factors associated with fatty acid transport to mitochondria, enhancing β-oxidation and thermogenic processes, yet decreasing the expression of enzymes and regulators of fatty acid synthesis. The VDAC1-based peptide thus offers a promising therapeutic approach for steatosis and NASH.
Collapse
Affiliation(s)
- Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
9
|
Toppo E, Sylvester Darvin S, Esakkimuthu S, Buvanesvaragurunathan K, Ajeesh Krishna T, Antony Caesar S, Stalin A, Balakrishna K, Pandikumar P, Ignacimuthu S, Al-Dhabi N. Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models. Biomed Pharmacother 2018; 107:979-988. [DOI: 10.1016/j.biopha.2018.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
|
10
|
Li YY, Tang D, Du YL, Cao CY, Nie YQ, Cao J, Zhou YJ. Fatty liver mediated by peroxisome proliferator-activated receptor-α DNA methylation can be reversed by a methylation inhibitor and curcumin. J Dig Dis 2018; 19:421-430. [PMID: 29802754 DOI: 10.1111/1751-2980.12610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/28/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our studies in vitro and in vivo aimed to investigate the influence of DNA methylation of peroxisome proliferator activated receptor-α (PPAR-α) gene in non-alcoholic fatty liver disease (NAFLD) pathogenesis and to observe whether the DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) and the herbal medicine curcumin might reverse the effect both in vivo and in vitro. METHODS Steatotic hepatocyte model of cell lines and NAFLD rat models were established following protocols documented in previous studies. Subsequently, the models received 5-Aza-CdR and curcumin treatment. Morphological, histological and laboratory variables in each group were determined by routine methods, including PPAR-α mRNA expression by polymerase chain reaction (PCR), PPAR-α protein expression by Western blot and DNA methylation by pyrosequencing. RESULTS The steatotic hepatocyte model and NAFLD rat model were completely established. The expressions of PPAR-α mRNA and protein were significantly lower in the steatotic hepatocyte and NAFLD rat model groups than in the controls (P < 0.05). The mean DNA methylation levels of the PPAR-α gene were significantly higher in the two steatotic model groups than in the controls, especially at several CpG sites (P < 0.05). 5-Aza-CdR and curcumin treatment significantly reversed the DNA methylation levels, increased PPAR-α mRNA and protein expression, and improved lipid accumulation in the two steatotic models (P < 0.05). CONCLUSIONS DNA methylation at the PPAR-α gene is involved in the pathogenesis of NAFLD and is possibly reversible by 5-Aza-CdR and curcumin. Curcumin may be a promising candidate for NAFLD therapy.
Collapse
Affiliation(s)
- Yu Yuan Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dan Tang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yan Lei Du
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuang Yu Cao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yu Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jie Cao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yong Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Hong M, Cai Z, Song L, Liu Y, Wang Q, Feng X. Gynostemma pentaphyllum Attenuates the Progression of Nonalcoholic Fatty Liver Disease in Mice: A Biomedical Investigation Integrated with In Silico Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8384631. [PMID: 29743925 PMCID: PMC5884411 DOI: 10.1155/2018/8384631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common type of liver disease in developed countries. Oxidative stress plays a critical role in the progression of NAFLD. Modern pharmacological study and clinical trials have demonstrated the remarkable antioxidant activity of Gynostemma pentaphyllum (GP) in chronic liver disease. One aim of this study was to explore the potential protective effects and mechanisms of action of GP extract on NAFLD. The in vivo results showed that GP extract could alleviate fatty degeneration and haptic fibrosis in NAFLD mice. For exploring the hepatoprotective mechanisms of GP, we used network pharmacology to predict the potential active components of GP and their intracellular targets in NAFLD. Based on the network pharmacology results, we further utilized biomedical assays to validate this in silico prediction. The results showed that Gypenoside XL could upregulate the protein level of PPARα in NAFLD; the transcription level of several PPARα downstream target genes such as acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase-1 (CPT-1) also increased after Gypenoside XL treatment. The overexpression of ACO and CPT-1 may involve the hepatoprotective effects of GP and Gypenoside XL on NAFLD by regulating mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Zhe Cai
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 665 Kongjiang Rd., Shanghai, China
| |
Collapse
|