1
|
Leonova E, Ryabokon N, Rostoka E, Borisovs V, Velena A, Bisenieks E, Duburs G, Dzintare M, Goncharova R, Sjakste N. Genotoxic and genoprotective effects of 1,4-dihydropyridine derivatives: a brief review. Arh Hig Rada Toksikol 2023; 74:1-7. [PMID: 37014687 DOI: 10.2478/aiht-2023-74-3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
This review summarises current knowledge about the genotoxic and genoprotective effects of 1,4-dihydropyridines (DHP) with the main focus on the water-soluble 1,4-DHPs. Most of these water-soluble compounds manifest very low calcium channel blocking activity, which is considered "unusual" for 1,4-DHPs. Glutapyrone, diludine, and AV-153 decrease spontaneous mutagenesis and frequency of mutations induced by chemical mutagens. AV-153, glutapyrone, and carbatones protect DNA against the damage produced by hydrogen peroxide, radiation, and peroxynitrite. The ability of these molecules to bind to the DNA may not be the only mechanism of DNA protection, as other mechanisms such as radical scavenging or binding to other genotoxic compounds may take place and enhance DNA repair. These uncertainties and reports of high 1,4-DHP concentrations damaging the DNA call for further in vitro and in vivo preclinical research, pharmacokinetic in particular, as it can help pinpoint the exact mechanism(s) of the genotoxic and/or genoprotective action of 1,4-DHPs.
Collapse
Affiliation(s)
- Elina Leonova
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| | - Nadezhda Ryabokon
- 2National Academy of Sciences of Belarus, Institute of Genetics and Cytology, Minsk, Belarus
| | - Evita Rostoka
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| | - Vitalijs Borisovs
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| | | | | | - Gunars Duburs
- 3Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Maija Dzintare
- 4Latvian Academy of Sport Education, Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Riga, Latvia
| | - Roza Goncharova
- 2National Academy of Sciences of Belarus, Institute of Genetics and Cytology, Minsk, Belarus
| | - Nikolajs Sjakste
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| |
Collapse
|
2
|
Muhamedejevs R, Živković L, Dzintare M, Sjakste N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem Biol Interact 2021; 348:109638. [PMID: 34508711 DOI: 10.1016/j.cbi.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The DNA-binding activities of compounds used as remedies can display DNA-protection, but also damaging effects in biological systems. The current review compiles literature data on DNA-binding activities of drugs widely used as remedies with different therapeutic indications. The compounds are classified according their mechanism of action: enzyme inhibitors, ion channel inhibitors, inhibitors of viral RNA replication and HIV protease and receptor agonists. DNA binding was reported for such widely used drugs as paracetamol, aspirin, metformin, statins and many others. The capability of the drug to bind DNA is sometimes coupled to genotoxic effects, but in some cases - to genome protection. Data on atoms and chemical groups involved in the drug-DNA interactions are also presented. In many cases the same atoms are involved in both interactions of the compounds with proteins and DNA.
Collapse
Affiliation(s)
- Ruslans Muhamedejevs
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga, LV-1006, Latvia
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Maija Dzintare
- Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Latvian Academy of Sport Education, Brivibas gatve 333, Riga, LV-1006, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Jelgavas Street 1, Riga, LV-1004, Latvia.
| |
Collapse
|
3
|
1,4-dihydropyridine derivatives increase mRNA expression of Psma3, Psmb5, and Psmc6 in rats. ACTA ACUST UNITED AC 2021; 72:148-156. [PMID: 34187104 PMCID: PMC8265202 DOI: 10.2478/aiht-2021-72-3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
The ubiquitin-proteasome system modifies different cellular and protein functions. Its dysregulation may lead to disrupted proteostasis associated with multiple pathologies and aging. Pharmacological regulation of proteasome functions is already an important part of the treatment of several diseases. 1,4-dihydropyridine (1,4-DHP) derivatives possess different pharmacological activities, including antiaging and neuroprotective. The aim of this study was to investigate the effects of several 1,4-DHP derivatives on mRNA expression levels of proteasomal genes Psma3, Psmb5, and Psmc6 in several organs of rats. Rats were treated with metcarbatone, etcarbatone, glutapyrone, styrylcarbatone, AV-153-Na, or AV-153-Ca per os for three days. mRNA expression levels were determined with real-time polymerase chain reaction (PCR). For AV-153-Na and AV-153-Ca, we also determined the expression of the Psma6 gene. In the kidney, metcarbatone, etcarbatone, styrylcarbatone, and AV-153-Na increased the expression of all analysed genes. Glutapyrone increased the expression of Psmb5 and Psmc6 but did not affect the expression of Psma3. In the blood, glutapyrone increased Psmb5 expression. In the liver, AV-153-Na increased the expression of Psma6 and Psmc6 but lowered the expression of Psmb5, while AV-153-Ca only increased Psma6 expression. The ability of 1,4-DHP derivatives to increase the expression of proteasome subunit genes might hold a therapeutic potential in conditions associated with impaired proteasomal functions, but further research is needed.
Collapse
|
4
|
Kopjar N, Fuchs N, Žunec S, Mikolić A, Micek V, Kozina G, Lucić Vrdoljak A, Brčić Karačonji I. DNA Damaging Effects, Oxidative Stress Responses and Cholinesterase Activity in Blood and Brain of Wistar Rats Exposed to Δ 9-Tetrahydrocannabinol. Molecules 2019; 24:E1560. [PMID: 31010235 PMCID: PMC6515386 DOI: 10.3390/molecules24081560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/24/2023] Open
Abstract
Currently we are faced with an ever-growing use of Δ9-tetrahydrocannabinol (THC) preparations, often used as supportive therapies for various malignancies and neurological disorders. As some of illegally distributed forms of such preparations, like cannabis oils and butane hash oil, might contain over 80% of THC, their consumers can become intoxicated or experience various detrimental effects. This fact motivated us for the assessments of THC toxicity in vivo on a Wistar rat model, at a daily oral dose of 7 mg/kg which is comparable to those found in illicit preparations. The main objective of the present study was to establish the magnitude and dynamics of DNA breakage associated with THC exposure in white blood and brain cells of treated rats using the alkaline comet assay. The extent of oxidative stress after acute 24 h exposure to THC was also determined as well as changes in activities of plasma and brain cholinesterases (ChE) in THC-treated and control rats. The DNA of brain cells was more prone to breakage after THC treatment compared to DNA in white blood cells. Even though DNA damage quantified by the alkaline comet assay is subject to repair, its elevated level detected in the brain cells of THC-treated rats was reason for concern. Since neurons do not proliferate, increased levels of DNA damage present threats to these cells in terms of both viability and genome stability, while inefficient DNA repair might lead to their progressive loss. The present study contributes to existing knowledge with evidence that acute exposure to a high THC dose led to low-level DNA damage in white blood cells and brain cells of rats and induced oxidative stress in brain, but did not disturb ChE activities.
Collapse
Affiliation(s)
- Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Nino Fuchs
- University Hospital Centre Zagreb, Zagreb HR-10000 Croatia.
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Anja Mikolić
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Goran Kozina
- University Centre Varaždin, University North, Varaždin HR-42000, Croatia.
| | - Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | | |
Collapse
|
5
|
Milkovic L, Vukovic T, Zarkovic N, Tatzber F, Bisenieks E, Kalme Z, Bruvere I, Ogle Z, Poikans J, Velena A, Duburs G. Antioxidative 1,4-Dihydropyridine Derivatives Modulate Oxidative Stress and Growth of Human Osteoblast-Like Cells In Vitro. Antioxidants (Basel) 2018; 7:antiox7090123. [PMID: 30235855 PMCID: PMC6162383 DOI: 10.3390/antiox7090123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 µM H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 µM). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Tea Vukovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Franz Tatzber
- Institute of Pathophysiology and Immunology, Medical University of Graz, A-8036 Graz, Austria.
| | - Egils Bisenieks
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Zenta Kalme
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Imanta Bruvere
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Zaiga Ogle
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Janis Poikans
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Astrida Velena
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| |
Collapse
|
6
|
Leonova E, Rostoka E, Sauvaigo S, Baumane L, Selga T, Sjakste N. Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity. PeerJ 2018; 6:e4609. [PMID: 29713564 PMCID: PMC5923214 DOI: 10.7717/peerj.4609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background 1,4-dihydropyridines (1,4-DHP) possesses important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. It was shown that the antimutagenic 1,4-dihydropyridine AV-153-Na interacts with DNA. The aim of the current study was to test the capability of the compound to scavenge peroxynitrite and hydroxyl radical, to test intracellular distribution of the compound, and to assess the ability of the compound to modify the activity of DNA repair enzymes and to protect the DNA in living cells against peroxynitrite-induced damage. Methods Peroxynitrite decomposition was assayed by UV spectroscopy, hydroxyl radical scavenging—by EPR spectroscopy. DNA breakage was determined by the “comet method”, activity of DNA repair enzymes—using Glyco-SPOT and ExSy-SPOT assays. Intracellular distribution of the compound was studied by laser confocal scanning fluorescence microscopy. Fluorescence spectroscopy titration and circular dichroism spectroscopy were used to study interactions of the compound with human serum albumin. Results Some ability to scavenge hydroxyl radical by AV-153-Na was detected by the EPR method, but it turned out to be incapable of reacting chemically with peroxynitrite. However, AV-153-Na effectively decreased DNA damage produced by peroxynitrite in cultured HeLa cells. The Glyco-SPOT test essentially revealed an inhibition by AV-153-Na of the enzymes involved thymine glycol repair. Results with ExSy-SPOT chip indicate that AV-153-Na significantly stimulates excision/synthesis repair of 8-oxoguanine (8-oxoG), abasic sites (AP sites) and alkylated bases. Laser confocal scanning fluorescence microscopy demonstrated that within the cells AV-153-Na was found mostly in the cytoplasm; however, a stain in nucleolus was also detected. Binding to cytoplasmic structures might occur due to high affinity of the compound to proteins revealed by spectroscopical methods. Discussion Activation of DNA repair enzymes after binding to DNA appears to be the basis for the antimutagenic effects of AV-153-Na.
Collapse
Affiliation(s)
- Elina Leonova
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Evita Rostoka
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | - Turs Selga
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|