1
|
Vugmeyster L, Ostrovsky D, Rodgers A, Gwin K, Smirnov SL, McKnight CJ, Fu R. Persistence of Methionine Side Chain Mobility at Low Temperatures in a Nine-Residue Low Complexity Peptide, as Probed by 2 H Solid-State NMR. Chemphyschem 2024; 25:e202300565. [PMID: 38175858 PMCID: PMC10922872 DOI: 10.1002/cphc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-β1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Kirsten Gwin
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, WA 98225
| | - C. James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL USA 32310
| |
Collapse
|
2
|
Carugo OI. Chalcogen bonds formed by protein sulfur atoms in proteins. A survey of high-resolution structures deposited in the protein data bank. J Biomol Struct Dyn 2023; 41:9576-9582. [PMID: 36342326 DOI: 10.1080/07391102.2022.2143427] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The presence of chalcogen bonds in native proteins was investigated on a non-redundant and high-resolution (≤ 1 Angstrom) set of protein crystal structures deposited in the Protein Data Bank. It was observed that about one half of the sulfur atoms of methionines and disulfide bridges from chalcogen bonds with nucleophiles (oxygen and sulfur atoms, and aromatic rings). This suggests that chalcogen bonds are a non-bonding interaction important for protein stability. Quite numerous chalcogen bonds involve water molecules. Interestingly, in the case of disulfide bridges, chalcogen bonds have a marked tendency to occur along the S-S bond extension rather than along the C-S bond extension. Additionally, it has been observed that closer residues have a higher probability of being connected by a chalcogen bonds, while the secondary structure of the two residues connected by a chalcogen bond do not correlate with its formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oliviero Italo Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy
- Department of Structural and Computational Biology, Max Perutz Labs University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Carugo O. Interplay between hydrogen and chalcogen bonds in cysteine. Proteins 2023; 91:395-399. [PMID: 36250971 PMCID: PMC10092013 DOI: 10.1002/prot.26437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Protein structures are stabilized by several types of chemical interactions between amino acids, which can compete with each other. This is the case of chalcogen and hydrogen bonds formed by the thiol group of cysteine, which can form three hydrogen bonds with one hydrogen acceptor and two hydrogen donors and a chalcogen bond with a nucleophile along the extension of the CS bond. A survey of the Protein Data Bank shows that hydrogen bonds are about 40-50 more common than chalcogen bonds, suggesting that they are stronger and, consequently, prevail, though not always. It is also observed that frequently a thiol group that forms a chalcogen bond is also involved, as a hydrogen donor, in a hydrogen bond.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy.,Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Carugo O, Resnati G, Metrangolo P. Chalcogen Bonds Involving Selenium in Protein Structures. ACS Chem Biol 2021; 16:1622-1627. [PMID: 34477364 PMCID: PMC8453483 DOI: 10.1021/acschembio.1c00441] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Chalcogen bonds are the specific interactions involving group 16 elements as electrophilic sites. The role of chalcogen atoms as sticky sites in biomolecules is underappreciated, and the few available studies have mostly focused on S. Here, we carried out a statistical analysis over 3562 protein structures in the Protein Data Bank (PDB) containing 18 266 selenomethionines and found that Se···O chalcogen bonds are commonplace. These findings may help the future design of functional peptides and contribute to understanding the role of Se in nature.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Resnati
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierangelo Metrangolo
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
5
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
6
|
Koebel MR, Cooper A, Schmadeke G, Jeon S, Narayan M, Sirimulla S. S···O and S···N Sulfur Bonding Interactions in Protein-Ligand Complexes: Empirical Considerations and Scoring Function. J Chem Inf Model 2016; 56:2298-2309. [PMID: 27936771 DOI: 10.1021/acs.jcim.6b00236] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur bonding interactions between organosulfur compounds and proteins were examined using crystal structures deposited to-date in the PDB. The data was analyzed as a function of sulfur-σ-hole-bonding (i.e., sulfur bonds) to main chain Lewis bases, viz. oxygen and nitrogen atoms of the backbone amide linkages. The analyses also included an examination of sulfur bonding to side chain Lewis bases (O, N, and S) and to the "non-classical" Lewis bases present in electron-rich aromatic amino acids as-well-as to donor-acceptor bond angle distributions. The interactions analyzed included those restricted to the sum of van der Waals radii of the respective atoms or to a distance of 4 Å. The surveyed data revealed that sulfur bonding tendencies (C-S-C bond angles) were impacted not only by steric effects but perhaps also by enthalpic features present in both the donor and acceptor participants. This knowledge is not only of fundamental interest but is also important in terms of materials and drug-design involving moieties incorporating the sulfur atom. Additionally, a new empirical scoring function was developed to address the anisotropy of sulfur in protein-ligand interactions. This newly developed scoring function is incorporated into AutoDock Vina molecular docking program and is valuable for modeling and drug design.
Collapse
Affiliation(s)
- Mathew R Koebel
- Department of Basic Sciences, St. Louis College of Pharmacy , St. Louis, Missouri 63110, United States
| | - Aaron Cooper
- Department of Basic Sciences, St. Louis College of Pharmacy , St. Louis, Missouri 63110, United States
| | | | | | | | - Suman Sirimulla
- Department of Basic Sciences, St. Louis College of Pharmacy , St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Virrueta A, O'Hern CS, Regan L. Understanding the physical basis for the side‐chain conformational preferences of methionine. Proteins 2016; 84:900-11. [DOI: 10.1002/prot.25026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/17/2016] [Accepted: 02/03/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Alejandro Virrueta
- Department of Mechanical Engineering & Materials ScienceYale UniversityNew Haven Connecticut
- Integrated Graduate Program in Physical & Engineering BiologyYale UniversityNew Haven Connecticut
| | - Corey S. O'Hern
- Department of Mechanical Engineering & Materials ScienceYale UniversityNew Haven Connecticut
- Integrated Graduate Program in Physical & Engineering BiologyYale UniversityNew Haven Connecticut
- Department of PhysicsYale UniversityNew Haven Connecticut
- Department of Applied PhysicsYale UniversityNew Haven Connecticut
| | - Lynne Regan
- Integrated Graduate Program in Physical & Engineering BiologyYale UniversityNew Haven Connecticut
- Department of Molecular Biophysics & BiochemistryYale UniversityNew Haven Connecticut
- Department of ChemistryYale UniversityNew Haven Connecticut
| |
Collapse
|
8
|
Iwaoka M, Babe N. Mining and Structural Characterization of S···X Chalcogen Bonds in Protein Database. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.1002612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Natsuki Babe
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| |
Collapse
|
9
|
Iwaoka M, Isozumi N. Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 2012; 17:7266-83. [PMID: 22695232 PMCID: PMC6269016 DOI: 10.3390/molecules17067266] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
In organic molecules a divalent sulfur atom sometimes adopts weak coordination to a proximate heteroatom (X). Such hypervalent nonbonded S···X interactions can control the molecular structure and chemical reactivity of organic molecules, as well as their assembly and packing in the solid state. In the last decade, similar hypervalent interactions have been demonstrated by statistical database analysis to be present in protein structures. In this review, weak interactions between a divalent sulfur atom and an oxygen or nitrogen atom in proteins are highlighted with several examples. S···O interactions in proteins showed obviously different structural features from those in organic molecules (i.e., π(o) → σ(s)* versus n(o) → σ(s)* directionality). The difference was ascribed to the HOMO of the amide group, which expands in the vertical direction (π(o)) rather than in the plane (n(o)). S···X interactions in four model proteins, phospholipase A₂ (PLA₂), ribonuclease A (RNase A), insulin, and lysozyme, have also been analyzed. The results suggested that S···X interactions would be important factors that control not only the three-dimensional structure of proteins but also their functions to some extent. Thus, S···X interactions will be useful tools for protein engineering and the ligand design.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| | | |
Collapse
|
10
|
|
11
|
Chakrabarti P, Bhattacharyya R. Geometry of nonbonded interactions involving planar groups in proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 95:83-137. [PMID: 17629549 DOI: 10.1016/j.pbiomolbio.2007.03.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 03/18/2007] [Indexed: 11/26/2022]
Abstract
Although hydrophobic interaction is the main contributing factor to the stability of the protein fold, the specificity of the folding process depends on many directional interactions. An analysis has been carried out on the geometry of interaction between planar moieties of ten side chains (Phe, Tyr, Trp, His, Arg, Pro, Asp, Glu, Asn and Gln), the aromatic residues and the sulfide planes (of Met and cystine), and the aromatic residues and the peptide planes within the protein tertiary structures available in the Protein Data Bank. The occurrence of hydrogen bonds and other nonconventional interactions such as C-H...pi, C-H...O, electrophile-nucleophile interactions involving the planar moieties has been elucidated. The specific nature of the interactions constraints many of the residue pairs to occur with a fixed sequence difference, maintaining a sequential order, when located in secondary structural elements, such as alpha-helices and beta-turns. The importance of many of these interactions (for example, aromatic residues interacting with Pro or cystine sulfur atom) is revealed by the higher degree of conservation observed for them in protein structures and binding regions. The planar residues are well represented in the active sites, and the geometry of their interactions does not deviate from the general distribution. The geometrical relationship between interacting residues provides valuable insights into the process of protein folding and would be useful for the design of protein molecules and modulation of their binding properties.
Collapse
Affiliation(s)
- Pinak Chakrabarti
- Department of Biochemistry and Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | |
Collapse
|
12
|
Iwaoka M, Isozumi N. Possible roles of S···O and S···N interactions in the functions and evolution of phospholipase A 2. Biophysics (Nagoya-shi) 2006; 2:23-34. [PMID: 27857557 PMCID: PMC5036642 DOI: 10.2142/biophysics.2.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 01/30/2006] [Indexed: 12/01/2022] Open
Abstract
To investigate possible roles of S···X (X= O, N, S) interactions in the functions and evolution of a protein, two types of database analyses were carried out for a vertebrate phospholipase A2 (PLA2) family. A comprehensive search for close S···X contacts in the structures retrieved from protein data bank (PDB) revealed that there are four common S···O interactions and one common S···N interaction for the PLA2 domain group (PLA2-DG), while an additional three S···O interactions were found for the snake PLA2 domain group (sPLA2-DG). On the other hand, a phylogenetic analysis on the conservation of the observed S···O and S···N interactions over various amino acid sequences of sPLA2-DG demonstrated probable clustering of the interactions on the dendrogram. Most of the interactions characterized for PLA2 were found to reside in the vicinity of the active site and to be able to tolerate the conformational changes due to the substrate binding. These observations suggested that the S···X interactions play some role in the functions and evolution of the PLA2 family.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Noriyoshi Isozumi
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| |
Collapse
|
13
|
Iwaoka M, Takemoto S, Tomoda S. Statistical and theoretical investigations on the directionality of nonbonded S...O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 2002; 124:10613-20. [PMID: 12197764 DOI: 10.1021/ja026472q] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Weak nonbonded interactions between a divalent sulfur (S) atom and a main-chain carbonyl oxygen (O) atom have recently been characterized in proteins. However, they have shown distinctly different directional propensities around the O atom from the S...O interactions in small organic compounds, although the linearity of the C-S...O or S-S...O atomic alignment was commonly observed. To elucidate the observed discrepancy, a comprehensive search for nonbonded S.O interactions in the Cambridge Structural Database (CSD) and MP2 calculations on the model complexes between dimethyl disulfide (CH(3)SSCH(3)) and various carbonyl compounds were performed. It was found that the O atom showed a strong intrinsic tendency to approach the S atom from the backside of the S-C or S-S bond (in the sigma(S) direction). On the other hand, the S atom had both possibilities of approach to the carbonyl O atom within the same plane (in the n(O) direction) and out of the plane (in the pi(O) direction). In the case of S...O(amide) interactions, the pi(O) direction was significantly preferred as observed in proteins. Thus, structural features of S...O interactions depend on the type of carbonyl groups involved. The results suggested that S.O interactions may control protein structures to some extent and that the unique directional properties of S...O interactions could be applied to molecular design.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
14
|
Iwaoka M, Takemoto S, Okada M, Tomoda S. Weak Nonbonded S···X (X = O, N, and S) Interactions in Proteins. Statistical and Theoretical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2002. [DOI: 10.1246/bcsj.75.1611] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Abstract
Of all the nonbonded interactions, hydrogen bond, because of its geometry involving polar atoms, is the most easily recognizable. Here we characterize two interactions involving the divalent sulfur of methionine (Met) residues that do not need any participation of proton. In one an oxygen atom of the main-chain carbonyl group or a carboxylate side chain is used. In another an aromatic atom interacting along the face of the ring is utilized. In these, the divalent sulfur behaves as an electrophile and the other electron-rich atom, a nucleophile. The stereochemistry of the interaction is such that the nucleophile tends to approach approximately along the extension of one of the covalent bonds to S. The nitrogen atom of histidine side chain is extensively used in these nonbonded contacts. There is no particular geometric pattern in the interaction of S with the edge of an aromatic ring, except when an N-H group in involved, which is found within 40 degrees from the perpendicular to the sulfide plane, thus defining the geometry of hydrogen bond interaction involving the sulfur atom. As most of the Met residues which partake in such stereospecific interactions are buried, these would be important for the stability of the protein core, and their incorporation in the binding site would be useful for molecular recognition and optimization of the site's affinity for partners (especially containing aromatic and heteroaromatic groups). Mutational studies aimed at replacing Met by other residues would benefit from the delineation of these interactions.
Collapse
Affiliation(s)
- D Pal
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | |
Collapse
|
16
|
Iwaoka M, Takemoto S, Okada M, Tomoda S. Statistical Characterization of Nonbonded S···O Interactions in Proteins. CHEM LETT 2001. [DOI: 10.1246/cl.2001.132] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|