1
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
2
|
Hihath J, Guo S, Zhang P, Tao N. Effects of cytosine methylation on DNA charge transport. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:164204. [PMID: 22466008 DOI: 10.1088/0953-8984/24/16/164204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.
Collapse
Affiliation(s)
- Joshua Hihath
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
3
|
Abstract
Alterations in DNA methylation patterns are implicated in playing a major role in the development of cancer, thus highlighting the need to continually develop new technologies to analyze epigenetic marks. Methylated-CpG Island Recovery Assay (MIRA), based on the high affinity of the MBD2b/MDB3L1 complex for double-stranded methylated DNA, allows for the recovery of methylated DNA without the use of bisulfite conversion or antibody recognition. MIRA is capable of detecting low-density methylation of a single methylated CpG nucleotide. This technique can be used in conjunction with microarrays or next-generation sequencing to analyze recovered methylated DNA on a genome-wide scale.
Collapse
|
4
|
Ying H, Epps J, Williams R, Huttley G. Evidence that localized variation in primate sequence divergence arises from an influence of nucleosome placement on DNA repair. Mol Biol Evol 2010; 27:637-49. [PMID: 19843619 PMCID: PMC2822288 DOI: 10.1093/molbev/msp253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding the origins of localized substitution rate heterogeneity has important implications for identifying functional genomic sequences. Outside of gene regions, the origins of rate heterogeneity remain unclear. Experimental studies establish that chromatin compaction affects rates of both DNA lesion formation and repair. A functional association between chromatin status and 5-methyl-cytosine also exists. These suggest that both the total rate and the type of substitution will be affected by chromatin status. Regular positioning of nucleosomes, the building block of chromatin, further predicts that substitution rate and type should vary spatially in an oscillating manner. We addressed chromatin's influence on substitution rate and type in primates. Matched numbers of sites were sampled from Dnase I hypersensitive (DHS) and closed chromatin control flank (Flank). Likelihood ratio tests revealed significant excesses of total and of transition substitutions in Flank compared with matched DHS for both intergenic and intronic samples. An additional excess of CpG transitions was evident for the intergenic, but not intronic, regions. Fluctuation in substitution rate along approximately 1,800 primate promoters was measured using phylogenetic footprinting. Significant positive correlations were evident between the substitution rate and a nucleosome score from resting human T-cells, with up to approximately 50% of the variance in substitution rate accounted for. Using signal processing techniques, a dominant oscillation at approximately 200 bp was evident in both the substitution rate and the nucleosome score. Our results support a role for differential DNA repair rates between open and closed chromatin in the spatial distribution of rate heterogeneity.
Collapse
Affiliation(s)
- Hua Ying
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Julian Epps
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rohan Williams
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gavin Huttley
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-Sundberg M. Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment. Hum Genet 2009; 127:1-17. [DOI: 10.1007/s00439-009-0748-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/21/2009] [Indexed: 12/23/2022]
|
6
|
Hayatsu H, Shiraishi M, Negishi K. Bisulfite modification for analysis of DNA methylation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2008; Chapter 6:Unit 6.10. [PMID: 18551428 DOI: 10.1002/0471142700.nc0610s33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bisulfite is known to deaminate cytosine in nucleic acids, while 5-methylcytosine resists this bisulfite action. For this reason, bisulfite treatment has been used for detecting 5-methylcytosine in DNA, a minor component of eukaryotic DNA, presently recognized as playing an important role in the control of gene function. This procedure, called bisulfite genomic sequencing, is a principal method for the analysis of DNA methylation in various biological phenomena, including human diseases such as cancer. This unit describes an efficient procedure utilizing a newly developed high-concentration bisulfite solution. Protocols for this methodology are supplemented with discussions focused on chemical aspects of the bisulfite treatment.
Collapse
Affiliation(s)
- Hikoya Hayatsu
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | | | | |
Collapse
|
7
|
Yamada H, Tanabe K, Nishimoto SI. Photocurrent response after enzymatic treatment of DNA duplexes immobilized on gold electrodes: electrochemical discrimination of 5-methylcytosine modification in DNA. Org Biomol Chem 2007; 6:272-7. [PMID: 18174996 DOI: 10.1039/b715260d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate a photoelectrochemical approach to the detection of the methylation status of cytosine bases in DNA. We prepared anthraquinone (AQ) photosensitizer-tethered oligodeoxynucleotide (ODN) duplexes bearing 5-methylcytosine (mC) or the corresponding cytosine (C) at a restriction site of the ODN strand immobilized on gold electrodes, and measured their photocurrent responses arising from hole transport after enzymatic digestion. Treatment with HapII or HhaI of the duplexes bearing normal C led to strand cleavage, and the photosensitizer unit was eliminated from the ODN strand immobilized on the gold electrode, exclusively reducing the photocurrent density. With a similar treatment, the duplexes bearing mC showed higher photocurrent responses arising from hole transport through the duplex. This significant difference in the photocurrent response between mC and normal C residues in DNA on the gold electrodes is potentially applicable to the detection of mC modification in DNA.
Collapse
Affiliation(s)
- Hisatsugu Yamada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
8
|
Yamada H, Tanabe K, Nishimoto SI. Fluorometric identification of 5-methylcytosine modification in DNA: combination of photosensitized oxidation and invasive cleavage. Bioconjug Chem 2007; 19:20-3. [PMID: 18038964 DOI: 10.1021/bc7003318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient fluorometric detection system of DNA methylation has been developed by a combination of a photooxidative DNA cleavage reaction with 2-methyl-1,4-naphthoquinone (NQ) chromophore and an invasive cleavage reaction with human Flap endonuclease-1. Enzymatic treatment of a mixture of photochemically fragmented target oligodeoxynucleotides (ODNs) at 5-methylcytosine mC) and hairpin-like probe oligomer possessing a fluorophore (F) and a quencher (D) resulted in a dramatic enhancement of fluorescence. In contrast, fluorescence emission for the ODN containing cytosine but not mC at the target sequence was extremely weak. In addition, by monitoring the fluorescence change, this system allows for the detection of mC in DNA at subfemtomole amounts. This system would provide a highly sensitive protocol for determining the methylation status in DNA by fluorescence emission.
Collapse
Affiliation(s)
- Hisatsugu Yamada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
9
|
Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116:496-526. [PMID: 18001838 DOI: 10.1016/j.pharmthera.2007.09.004] [Citation(s) in RCA: 771] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 01/11/2023]
Abstract
The polymorphic nature of the cytochrome P450 (CYP) genes affects individual drug response and adverse reactions to a great extent. This variation includes copy number variants (CNV), missense mutations, insertions and deletions, and mutations affecting gene expression and activity of mainly CYP2A6, CYP2B6, CYP2C9, CYP2C19 and CYP2D6, which have been extensively studied and well characterized. CYP1A2 and CYP3A4 expression varies significantly, and the cause has been suggested to be mainly of genetic origin but the exact molecular basis remains unknown. We present a review of the major polymorphic CYP alleles and conclude that this variability is of greatest importance for treatment with several antidepressants, antipsychotics, antiulcer drugs, anti-HIV drugs, anticoagulants, antidiabetics and the anticancer drug tamoxifen. We also present tables illustrating the relative importance of specific common CYP alleles for the extent of enzyme functionality. The field of pharmacoepigenetics has just opened, and we present recent examples wherein gene methylation influences the expression of CYP. In addition microRNA (miRNA) regulation of P450 has been described. Furthermore, this review updates the field with respect to regulatory initiatives and experience of predictive pharmacogenetic investigations in the clinics. It is concluded that the pharmacogenetic knowledge regarding CYP polymorphism now developed to a stage where it can be implemented in drug development and in clinical routine for specific drug treatments, thereby improving the drug response and reducing costs for drug treatment.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | | | | | | |
Collapse
|
10
|
Barciszewska MZ, Barciszewska AM, Rattan SIS. TLC-based detection of methylated cytosine: application to aging epigenetics. Biogerontology 2007; 8:673-8. [PMID: 17891469 DOI: 10.1007/s10522-007-9109-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/28/2007] [Indexed: 01/13/2023]
Abstract
5-Methylcytosine (m(5)C) has a plethora of functions and roles in various biological processes including human diseases and aging. A TLC-based fast and simple method for quantitative determination of total genomic levels of m(5)C in DNA is described, which can be applicable to aging research with respect to rapid and high throughput screening and comparison. Using this method, an example of the analysis of global alternations of m(5)C in serially passaged human skin fibroblasts is provided, which shows age-related global hypomethylation during cellular aging in vitro. This method can be useful for screening potential modulators of aging at the level of epigenetic alterations.
Collapse
Affiliation(s)
- Mirosława Z Barciszewska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, Poznan 61-704, Poland.
| | | | | |
Collapse
|
11
|
Zhang W, Bouffard GG, Wallace SS, Bond JP. Estimation of DNA sequence context-dependent mutation rates using primate genomic sequences. J Mol Evol 2007; 65:207-14. [PMID: 17676366 DOI: 10.1007/s00239-007-9000-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
It is understood that DNA and amino acid substitution rates are highly sequence context-dependent, e.g., C --> T substitutions in vertebrates may occur much more frequently at CpG sites and that cysteine substitution rates may depend on support of the context for participation in a disulfide bond. Furthermore, many applications rely on quantitative models of nucleotide or amino acid substitution, including phylogenetic inference and identification of amino acid sequence positions involved in functional specificity. We describe quantification of the context dependence of nucleotide substitution rates using baboon, chimpanzee, and human genomic sequence data generated by the NISC Comparative Sequencing Program. Relative mutation rates are reported for the 96 classes of mutations of the form 5' alphabetagamma 3' --> 5' alphadeltagamma 3', where alpha, beta, gamma, and delta are nucleotides and beta not equal delta, based on maximum likelihood calculations. Our results confirm that C --> T substitutions are enhanced at CpG sites compared with other transitions, relatively independent of the identity of the preceding nucleotide. While, as expected, transitions generally occur more frequently than transversions, we find that the most frequent transversions involve the C at CpG sites (CpG transversions) and that their rate is comparable to the rate of transitions at non-CpG sites. A four-class model of the rates of context-dependent evolution of primate DNA sequences, CpG transitions > non-CpG transitions approximately CpG transversions > non-CpG transversions, captures qualitative features of the mutation spectrum. We find that despite qualitative similarity of mutation rates among different genomic regions, there are statistically significant differences.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicine, University of Chicago, 515 CLSC, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
12
|
Tanabe K, Yamada H, Nishimoto SI. One-electron photooxidation and site-selective strand cleavage at 5-methylcytosine in DNA by sensitization with 2-methyl-1,4-naphthoquinone-tethered oligonucleotides. J Am Chem Soc 2007; 129:8034-40. [PMID: 17547405 DOI: 10.1021/ja071369s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosensitized one-electron oxidation was applied to discriminate a specific base site of 5-methylcytosine (mC) generated in DNA possessing a partial sequence of naturally occurring p53 gene, using a sensitizing 2-methyl-1,4-naphthoquinone (NQ) chromophore tethered to an interior of oligodeoxynucleotide (ODN) strands. Photoirradiation and subsequent hot piperidine treatment of the duplex consisting of mC-containing DNA and NQ-tethered complementary ODN led to oxidative strand cleavage selectively at the mC site, when the NQ chromophore was arranged so as to be in close contact with the target mC. The target mC is most likely to be one-electron oxidized into the radical cation intermediate by the sensitization of NQ. The resulting mC radical cation may undergo rapid deprotonation and subsequent addition of molecular oxygen, thereby leading to its degradation followed by strand cleavage at the target mC site. In contrast to mC-containing ODN, ODN analogs with replacement of normal cytosine, thymine, adenine, or guanine at the mC site underwent less amount of such an oxidative strand cleavage at the target base site, presumably due to occurrence of charge transfer and charge recombination processes between the base radical cation and the NQ radical anion. Furthermore, well designed incorporation of the NQ chromophore into an interior of ODN could suppress a competitive strand cleavage at consecutive guanines, which occurred as a result of positive charge transfer. Thus, photosensitization by an NQ-tethered ODN led to one-electron oxidative strand cleavage exclusively at the target mC site, providing a convenient method of discriminating mC in naturally occurring DNA such as human p53 gene as a positive band on a sequencing gel.
Collapse
Affiliation(s)
- Kazuhito Tanabe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
13
|
Benavides MA, Oelschlager DK, Zhang HG, Stockard CR, Vital-Reyes VS, Katkoori VR, Manne U, Wang W, Bland KI, Grizzle WE. Methionine inhibits cellular growth dependent on the p53 status of cells. Am J Surg 2007; 193:274-83. [PMID: 17236862 DOI: 10.1016/j.amjsurg.2006.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/23/2006] [Accepted: 07/23/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND Methionine, an essential amino acid, is important for normal growth and development, as it is required for both protein and polyamine synthesis as well as in methylation reactions. It has been reported that high concentrations of methionine inhibit cellular growth and gene expression in the human breast tumor-derived MCF-7 cells. These effects are thought to be mediated by the modulation of p53. However, the generalizability of this observation and the precise role of p53 in methionine-induced growth suppression needs to be determined. METHODS To determine if the inhibition of cell growth by methionine applies to other cell lines and to characterize further the role of p53 in methionine-induced growth suppression, we have assessed the effects of methionine on cellular growth and proliferation and p53 expression in cells expressing native p53, eg, breast cancer MCF-7 cells and prostate cancer LNCaP cells, and also in cells expressing a mutated (point) form of p53, eg, prostate cancer DU-145 cells. These cell lines were treated with varying concentrations of L-methionine. The effects of L-methionine on cell growth were assayed by using cell viability assays and immunostaining for Ki-67, a cell proliferation marker. The effects of methionine on p53 expression were assessed by using reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blot analysis. The role of p53 in L-methionine-mediated growth suppression was evaluated using short-interference RNA for p53 (siRNA-p53), immunoprecipitation, and direct DNA sequencing. RESULTS We demonstrated that methionine at a concentration of 1 to 5 mg/mL inhibited the growth of both MCF-7 and LNCaP cells. In association with the inhibition of growth, methionine also inhibited native p53 expression at the mRNA and protein levels, respectively. Furthermore, transfection with siRNA-p53, to knock down p53 expression, increased cell growth and proliferation of the LNCaP cells even when they were exposed to methionine. In contrast, the same treatment did not diminish growth or proliferation of the DU-145 cells. Also, the expression of mutated p53 at the mRNA or protein levels was not altered. CONCLUSION Our results extend a prior observation to other cell lines and demonstrate that high concentrations of methionine suppress the expression of native but not mutated p53. These inhibitory effects on cellular growth are, in part, due to inhibition of cellular proliferation probably via a p53-dependent pathway.
Collapse
Affiliation(s)
- Maximo A Benavides
- Department of Surgery, Research Training Program in Surgical Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shiraishi M, Sekiya T. Segregation of partly melted DNA molecules. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:463-73. [PMID: 16838839 DOI: 10.1080/15257770600684159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Segregation of partly melted DNA molecules is a convenient and efficient method to isolate DNA fragments associated with CpG islands. The method stands on the observation that the electrophoretic mobility of partly melted DNA fragments in a denaturing gradient gel is low and that they persist in the gel so long as the remaining helical part is sufficiently resistant to strand dissociation and dissociates slowly. Such features are observed in DNA fragments derived from CpG islands. These DNA fragments are preferentially retained in a denaturing gradient gel after prolonged electric field exposure, permitting the enrichment of DNA fragments derived from CpG islands. The principle and practical application of this method are reviewed.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- Department ofPharmaceutical Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan.
| | | |
Collapse
|
15
|
Kawamoto K, Enokida H, Gotanda T, Kubo H, Nishiyama K, Kawahara M, Nakagawa M. p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem Biophys Res Commun 2006; 339:790-6. [PMID: 16316628 DOI: 10.1016/j.bbrc.2005.11.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 11/25/2022]
Abstract
Promoter hypermethylation is one of the putative mechanisms underlying the inactivation of negative cell-cycle regulators. We examined whether the methylation status of p16(INK4a) and p14(ARF), genes located upstream of the RB and p53 pathway, is a useful biomarker for the staging, clinical outcome, and prognosis of human bladder cancer. Using methylation-specific PCR (MSP), we examined the methylation status of p16(INK4a) and p14(ARF) in 64 samples from 45 bladder cancer patients (34 males, 11 females). In 19 patients with recurrent bladder cancer, we examined paired tissue samples from their primary and recurrent tumors. The methylation status of representative samples was confirmed by bisulfite DNA sequencing analysis. The median follow-up duration was 34.3 months (range 27.0-100.1 months). The methylation rate for p16(INK4a) and p14(ARF) was 17.8% and 31.1%, respectively, in the 45 patients. The incidence of p16(INKa) and p14(ARF) methylation was significantly higher in patients with invasive (>or=pT2) than superficial bladder cancer (pT1) (p=0.006 and p=0.001, respectively). No MSP bands for p16(INK4a) and p14(ARF) were detected in the 8 patients with superficial, non-recurrent tumors. In 19 patients with tumor recurrence, the p16(INK4a) and p14(ARF) methylation status of the primary and recurrent tumors was similar. Of the 22 patients who had undergone cystectomy, 8 (36.4%) manifested p16(INKa) methylation; p16(INK4a) was not methylated in 23 patients without cystectomy (p=0.002). Kaplan-Meier analysis revealed that patients with p14(ARF) methylation had a significantly poorer prognosis than those without (p=0.029). This is the first study indicating that MSP analysis of p16(INK4a) and p14(ARF) genes is a useful biomarker for the pathological stage, clinical outcome, and prognosis of patients with bladder cancer.
Collapse
Affiliation(s)
- Ken Kawamoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-08520, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Hayatsu H. Bisulfite Modification of Cytosine and 5-Methylcytosine as used in Epigenetic Studies. Genes Environ 2006. [DOI: 10.3123/jemsge.28.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Hasegawa T, Kim HS, Fukushima M, Wataya Y. Sequence analysis of the 5'-flanking regions of human dihydropyrimidine dehydrogenase gene: identification of a new polymorphism related with effects of 5-fluorouracil. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:233-42. [PMID: 16021908 DOI: 10.1081/ncn-59679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD), known as a rate-limiting metabolic enzyme in the catabolism of 5-fluorouracil (5-FU), degrades more than about 80% of the administered 5-FU in human liver. Since it was reported that the anticancer effects of 5-FU were observed in cancer patients with lower DPD activities, many attempts have been conducted to anticipate the expected anticancer effects of 5-FU based on expression of intracanceral DPD. It have been reported that 39 different mutations and polymorphisms in the coding regions of DPD genes have been identified; however, there is no report on polymorphisms in the 5'-flanking region of DPD genes. We investigated polymorphisms in the 5'-flanking regions (3,058 bp), which are considered to control expression of DPD genes, in genomic DNA extracted from 37 kinds of human cancer cells. As the results, out of 37 cancer cells subjected to analysis, DLD- 7 cells had C insertion and 7 strains G deletion, which were hetelozygote. No significant relationship was identified between the DPD activity and the expression levels of DPD mRNA in examined 10 kinds of human cancer cells. However, in DLD-1 cells, which have C-insertion polymorphism in 5'-flanking region of DPD gene, the DPD activity was below detection limit (< or = 0.5 pmol/min/mg protein). Furthermore, 50% of cytosine residue on the CpG site generated by the C insertion was methylated at the 5 position. In this study, we have identified novel polymorphism possibly related the cytotoxicity of 5-FU in the 5'-flanking region of DPD gene. It is suggested that newly identified polymorphism of DPD gene might affect transcription of DPD, thereby providing influence on the clinical outcome of cancer patients treated with 5-FU.
Collapse
Affiliation(s)
- Takako Hasegawa
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama-shi, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|
18
|
Rauch T, Pfeifer GP. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. J Transl Med 2005; 85:1172-80. [PMID: 16025148 DOI: 10.1038/labinvest.3700311] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypermethylation of CpG islands is a phenomenon commonly observed during the development and progression of human tumors. Detection of methylated-CpG islands in easily accessible biological materials such as serum has the potential to be useful for the early diagnosis of cancer. Most currently used methods for detecting methylated-CpG islands are based on sodium bisulfite conversion of genomic DNA, followed by PCR reactions. Here we describe a method, methylated-CpG island recovery assay (MIRA) that does not depend on the use of sodium bisulfite but has similar sensitivity and specificity as bisulfite-based approaches. Methyl-CpG-binding domain proteins, such as methyl-CpG-binding domain protein-2 (MBD2), have the capacity to bind specifically to methylated DNA sequences. In the MIRA procedure, sonicated genomic DNA isolated from cells or tissue is incubated with a matrix containing glutathione-S-transferase-MBD2b in the presence of methyl-CpG-binding domain protein 3-like-1, a binding partner of MBD2 that increases the affinity of MBD2 for methylated DNA. Specifically bound DNA is eluted from the matrix and gene-specific PCR reactions are performed to detect CpG island methylation. Methylation can be detected using 1 ng of DNA or 3000 cells. MIRA is a specific and sensitive, but not laborious, technique that can be clinically useful in the detection and diagnosis of any DNA methylation-associated disease, including cancer.
Collapse
Affiliation(s)
- Tibor Rauch
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
19
|
Prandini MH, Dreher I, Bouillot S, Benkerri S, Moll T, Huber P. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 2005; 24:2992-3001. [PMID: 15735710 PMCID: PMC2800996 DOI: 10.1038/sj.onc.1208483] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial (VE)-cadherin is exclusively expressed at interendothelial junctions of normal and tumour vessels. In this report, we characterized the transcriptional activity of the human VE-cadherin promoter. Transient transfection assays revealed that sequences at positions --1135/-744 and -166/-5 base pairs are critical for promoter activity in endothelial cells. We show that specific sequences in the proximal region interact with Ets and Sp1 family members. Transgenic mice were created and the human VE-cadherin promoter was able to confer correct temporal and spatial expression on the LacZ gene in embryos. In adults, the transgene was specifically and strongly expressed in the lung, heart, ovary, spleen and kidney glomeruli, whereas expression was weak or absent in the vasculature of other organs, including the brain, thymus, liver and skeletal muscle. Neovessels in tumour grafts and Matrigel implants harboured strong stainings, indicating that promoter activity is enhanced in angiogenic situations. Furthermore, Matrigel and transfection assays showed that VE-cadherin promoter is subjected to bFGF induction. Transgene expression was also noticed in extravascular sites of the central nervous system, suggesting that silencer elements may be located elsewhere in the gene. These results are a first step towards addressing the organ- and tumour-specific regulation of the VE-cadherin gene.
Collapse
Affiliation(s)
- Marie-Hélène Prandini
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | | | - Stéphanie Bouillot
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | - Souhila Benkerri
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | | | - Philippe Huber
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
- * Correspondence should be adressed to: Philippe Huber
| |
Collapse
|
20
|
Abstract
While different markers for cancer diagnosis have been known for at least a decade, the systematic search for biomarkers emerged only several years ago. In this article, I will concentrate on DNA methylation as a dynamic and robust platform for the development of cancer-specific biomarkers. Simultaneous analysis of a growing number of independent methylation events can create increasingly more precise and individualized diagnostics. The differential detection of methylated and unmethylated DNA can be accomplished through either chemical modification or digestion with methylation-sensitive restriction enzyme(s). The benefits and potential pitfalls of both these approaches for clinical sample analysis will be addressed.
Collapse
Affiliation(s)
- Victor V Levenson
- Northwestern University, 710 N. Fairbanks Ct, Olson 8-424, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Shiraishi M, Oates AJ, Li X, Chuu YH, Sekiya T. Segregation of partly melted molecules: isolation of CpG islands by polyacrylamide gel electrophoresis. Biol Chem 2004; 385:967-73. [PMID: 15551872 DOI: 10.1515/bc.2004.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The technique of segregation of partly melted molecules (SPM) is a convenient and efficient method to isolate DNA fragments associated with CpG islands. The approach is conceptually simple and uses denaturant gradient gel electrophoresis to separate DNA molecules digested with restriction endonucleases. The SPM methodology has successfully been applied to the identification of genes from anonymous, unsequenced DNA fragments and CpG islands methylated in human cancer. In this article the theoretical background and practical application of the SPM method is reviewed.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | |
Collapse
|
22
|
Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y, Sekiya T. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Anal Biochem 2004; 329:1-10. [PMID: 15136161 DOI: 10.1016/j.ab.2004.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Zukiel R, Nowak S, Barciszewska AM, Gawronska I, Keith G, Barciszewska MZ. A Simple Epigenetic Method for the Diagnosis and Classification of Brain Tumors. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.196.2.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The new, simple, and reliable method for the diagnosis of brain tumors is described. It is based on a TLC quantitative determination of 5-methylcytosine (m5C) in relation to its damage products of DNA from tumor tissue. Currently, there is evidence that oxidative stress through reactive oxygen species (ROS) plays an important role in the etiology and progression of several human diseases. Oxidative damage of DNA, lipids, and proteins is deleterious for the cell. m5C, along with other basic components of DNA, is the target for ROS, which results in the appearance of new modified nucleic acid bases. If so, m5C residue constitutes a mutational hotspot position, whether it occurs within a nucleotide sequence of a structural gene or a regulatory region. Here, we show the results of the analysis of 82 DNA samples taken from brain tumor tissues. DNA was isolated and hydrolyzed into nucleotides, which, after labeling with [γ-32P]ATP, were separated on TLC. Chromatograms were evaluated using PhosphorImager and the amounts of 5-methyldeoxycytosine (m5dC) were calculated as a ratio (R) of m5dC to m5dC + deoxycytosine + deoxythymidine spot intensities. The R value could not only be a good diagnostic marker for brain tumors but also a factor differentiating low-grade and high-grade gliomas. Therefore, DNA methylation pattern might be a useful tool to give a primary diagnosis of a brain tumor or as a marker for the early detection of the relapse of the disease. This method has several advantages over those existing nowadays.
Collapse
Affiliation(s)
- Ryszard Zukiel
- 1Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University School of Medical Sciences, Poznan, Poland
| | - Stanislaw Nowak
- 1Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University School of Medical Sciences, Poznan, Poland
| | - Anna-Maria Barciszewska
- 1Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University School of Medical Sciences, Poznan, Poland
- 2Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Iwona Gawronska
- 3Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland; and
| | - Gerard Keith
- 4Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | |
Collapse
|
24
|
Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y, Tanaka K, Sekiya T. Variable estimation of genomic DNA methylation: a comparison of methyl-CpG binding domain column chromatography and bisulfite genomic sequencing. Anal Biochem 2002; 308:182-5. [PMID: 12234480 DOI: 10.1016/s0003-2697(02)00205-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|