1
|
Kocic G, Pavlovic R, Nikolic G, Veljkovic A, Panseri S, Chiesa LM, Andjelkovic T, Jevtovic-Stoimenov T, Sokolovic D, Cvetkovic T, Stojanovic S, Kocic H, Nikolic R. Effect of commercial or depurinized milk on rat liver growth-regulatory kinases, nuclear factor-kappa B, and endonuclease in experimental hyperuricemia: comparison with allopurinol therapy. J Dairy Sci 2014; 97:4029-42. [PMID: 24835972 DOI: 10.3168/jds.2013-7416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/26/2014] [Indexed: 11/19/2022]
Abstract
Hyperuricemia is a biochemical hallmark of gout, renal urate lithiasis, and inherited purine disorders, and may be a result of enormous ATP breakdown or purine release as a result of cardiovascular disease, hypertension, kidney disease, eclampsia, obesity, metabolic syndrome, psoriasis, tumor lysis syndrome, or intense physical training. The beneficial role of dairy products on hyperuricemia management and prevention is well documented in the literature. The primary aim of our experimental study was to examine the effect of milk dietary regimen (commercial 1.5% fat UHT milk or patented depurinized milk) compared with allopurinol therapy on experimental hyperuricemia induced by oxonic acid in rats. Principal component analysis was applied on a data set consisting of 11 variables for 8 different experimental groups. Among the 11 parameters measured (plasma uric acid and the liver parameters NFκB-p65, Akt kinase/phospho-Akt kinase, ERK kinase/phospho-ERK kinase, IRAK kinase/phospho IRAK kinase, p38/phospho-p38, and DNase), Akt/phospho Akt and ERK/phospho-ERK signaling were extracted as the most discriminating. We also compared the content of various potentially toxic compounds (sulfur compounds, ketones, aldehydes, alcohols, esters, carboxylic acids, and phthalates) in untreated commercial milk and depurinized milk. Of all the compounds investigated in this study that were observed in commercial milk (24 volatile organic compounds and 4 phthalates), 6 volatile organic compounds were not detected in depurinized milk. For almost all of the other compounds, significant decreases in concentration were observed in depurinized milk compared with commercial milk. In conclusion, a depurinized milk diet may be recommended in nutritional treatment of primary and secondary hyperuricemia to avoid uric acid and other volatile, potentially toxic compounds that may slow down liver regeneration and may induce chronic liver diseases.
Collapse
Affiliation(s)
- G Kocic
- Department of Biochemistry, Medical Faculty, University of Nis, Nis 18000, Serbia.
| | - R Pavlovic
- Department of Chemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - G Nikolic
- Department of Chemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - A Veljkovic
- Department of Biochemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - S Panseri
- Department of Veterinary Medicine, University of Milan, Milan 20121, Italy
| | - L M Chiesa
- Department of Veterinary Medicine, University of Milan, Milan 20121, Italy
| | - T Andjelkovic
- Department of Chemistry, Faculty of Science, University of Nis, Nis 18000, Serbia
| | - T Jevtovic-Stoimenov
- Department of Biochemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - D Sokolovic
- Department of Biochemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - T Cvetkovic
- Department of Biochemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - S Stojanovic
- Department of Biochemistry, Medical Faculty, University of Nis, Nis 18000, Serbia
| | - H Kocic
- Medical Faculty, University of Maribor, Maribor 2000, Slovenia
| | - R Nikolic
- Department of Chemistry, Faculty of Science, University of Nis, Nis 18000, Serbia
| |
Collapse
|
2
|
Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci 2010; 260:151-62. [PMID: 19579000 DOI: 10.1007/s00406-009-0033-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 06/19/2009] [Indexed: 02/06/2023]
Abstract
Altered neuroplasticity contributes to the pathophysiology of schizophrenia. However, the idea that antipsychotics may act, at least in part, by normalizing neurogenesis has not been consistently supported. Our study seeks to determine whether hippocampal cell proliferation is altered in adult rats pretreated with ketamine, a validated model of schizophrenia, and whether chronic administration with neuroleptic drugs (haloperidol and risperidone) affect changes of cell genesis/survival. Ketamine per se has no effect on cell proliferation. Its withdrawal, however, significantly induced cell proliferation/survival in the hippocampus. Risperidone and haloperidol supported cell genesis/survival as well. During ketamine withdrawal, however, their application did not affect cell proliferation/survival additionally. TUNEL staining indicated a cell-protective potency of both neuroleptics with respect to a ketamine-induced cell death. As RT-PCR and Western blot revealed that the treatment effects of risperidone and haloperidol seemed to be mediated through activation of VEGF and MMP2. The mRNA expression of NGF, BDNF, and NT3 was unaffected. From the respective receptors, only TrkA was enhanced when ketamine withdrawal was combined with risperidone or haloperidol. Risperidone also induced BCL-2. Ketamine withdrawal has no effect on the expression of VEGF, MMP2, or BCL-2. It activated the expression of BDNF. This effect was normalized by risperidone or haloperidol. The findings indicate a promoting effect of risperidone and haloperidol on survival of young neurons in the hippocampus by enhancing the expression of the anti-apoptotic protein BCL-2 and by activation of VEGF/MMP2, whereby an interference with ketamine and thus a priority role of the NMDA system was not evident.
Collapse
|
3
|
Hagen N, Van Veldhoven PP, Proia RL, Park H, Merrill AH, van Echten-Deckert G. Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. J Biol Chem 2009; 284:11346-53. [PMID: 19251691 PMCID: PMC2670140 DOI: 10.1074/jbc.m807336200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/25/2009] [Indexed: 11/06/2022] Open
Abstract
Cerebellar granule cells from sphingosine 1-phosphate (S1P) lyase-deficient mice were used to study the toxicity of this potent sphingolipid metabolite in terminally differentiated postmitotic neurons. Based on earlier findings with the lyase-stable, semi-synthetic, cis-4-methylsphingosine phosphate, we hypothesized that accumulation of S1P above a certain threshold induces neuronal apoptosis. The present studies confirmed this conclusion and further revealed that for S1P to induce apoptosis in lyase-deficient neurons it must also be produced by sphingosine-kinase2 (SK2). These conclusions are based on the finding that incubation of lyase-deficient neurons with either sphingosine or S1P results in a similar elevation in cellular S1P; however, only S1P addition to the culture medium induces apoptosis. This was not due to S1P acting on the S1P receptor but to hydrolysis of S1P to sphingosine that was phosphorylated by the cells, as described before for cis-4-methylsphingosine. Although the cells produced S1P from both exogenously added sphingosine as well as sphingosine derived from exogenous S1P, the S1P from these two sources were not equivalent, because the former was primarily produced by SK1, whereas the latter was mainly formed by SK2 (as also was cis-4-methylsphingosine phosphate), based on studies in neurons lacking SK1 or SK2 activity. Thus, these investigations show that, due to the existence of at least two functionally distinct intracellular origins for S1P, exogenous S1P can be neurotoxic. In this model, S1P accumulated due to a defective lyase, however, this cause of toxicity might also be important in other cases, as illustrated by the neurotoxicity of cis-4-methylsphingosine phosphate.
Collapse
Affiliation(s)
- Nadine Hagen
- Kekulé-Institute, Life and Medical Sciences Membrane Biology and Lipid Biochemistry, University of Bonn, D-53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Gomes E, Rockwell P. p38 MAPK as a negative regulator of VEGF/VEGFR2 signaling pathway in serum deprived human SK-N-SH neuroblastoma cells. Neurosci Lett 2007; 431:95-100. [PMID: 18178312 DOI: 10.1016/j.neulet.2007.11.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/02/2007] [Accepted: 11/11/2007] [Indexed: 11/27/2022]
Abstract
Evidence suggests that vascular endothelial growth factor (VEGF) mediates neuroprotection to prevent an apoptotic cell death. The p38 mitogen-activated protein kinase (MAPK) pathway is implicated as an important mediator of neuronal apoptosis but its role in VEGF-mediated neuroprotection is unclear. Herein, we show that treatments with the p38 MAPK inhibitor, SB202190, enhanced VEGF-mediated survival in serum deprived SK-N-SH neuroblastoma cells by decreasing caspase-3/7 activation while increasing the phosphorylation of the extracellular signal-regulated kinase (ERK1/2) and Akt signaled through the VEGF receptor, VEGFR2. A blockade of VEGFR2 signaling with a selective inhibitor, SU1498 or gene silencing with VEGFR2 siRNA in SB202190 treated cells abrogated this prosurvival response and induced high activation levels of caspase-3/7. These findings suggested that the protection elicited by p38 MAPK inhibition in serum starved cells was dependent on a functional VEGF/VEGFR2 pathway. However, p38 MAPK inhibition attenuated caspase-3 cleavage in SU1498/SB202190 treated cells, indicating that p38 MAPK and caspase-3 only contributed in part to the total levels of caspase-3/7 induced by VEGFR2 inhibition. Pretreatments with the pan caspase inhibitor, z-VAD-fmk, prevented the apoptosis induced by VEGFR2 inhibition and promoted survival in serum starved cells irrespective of p38 MAPK inhibition. Collectively, our findings suggest that p38 MAPK exerts a negative effect on VEGF-mediated signaling through VEGFR2 in serum starved neuroblastoma cells. Furthermore, VEGF signals protection against a caspase-mediated cell death that is regulated by p38 MAPK-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Evan Gomes
- Department of Biological Sciences, Hunter College of The City University of New York, 695 Park Ave, New York 10021, United States
| | | |
Collapse
|
5
|
van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1978-94. [PMID: 16843432 DOI: 10.1016/j.bbamem.2006.06.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids were discovered more than a century ago in the brain. Cerebrosides and sphingomyelins were named so because they were first isolated from neural tissue. Although glycosphingolipids and especially those containing sialic acid in their oligosaccharide moiety are particularly abundant in the brain, sphingolipids are ubiquitous cellular membrane components. They form cell- and species-specific profiles at the cell surfaces that characteristically change in development, differentiation, and oncogenic transformation, indicating the significance of these lipid molecules for cell-cell and cell-matrix interactions as well as for cell adhesion, modulation of membrane receptors and signal transduction. This review summarizes sphingolipid metabolism with emphasis on aspects particularly relevant in neural cell types, including neurons, oligodendrocytes and neuroblastoma cells. In addition, the reader is briefly introduced into the methodology of lipid evaluation techniques and also into the putative physiological functions of glycosphingolipids and their metabolites in neural tissue.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- Kekulé-Institute for Organic Chemistry and Biochemistry, University Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
6
|
Naetzker S, Hagen N, Echten-Deckert G. Activation of p38 mitogen-activated protein kinase and partial reactivation of the cell cycle by cis-4-methylsphingosine direct postmitotic neurons towards apoptosis. Genes Cells 2006; 11:269-79. [PMID: 16483315 DOI: 10.1111/j.1365-2443.2006.00933.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As shown before in three different cell types, cis-4-methylsphingosine is a synthetic, membrane permeable, pro-drug, that is taken up by cells and phosphorylated to a metabolically stable cis-4-methylsphingosine-phosphate. The synthetic compound mimicked the mitogenic effect of sphingosine-1-phosphate (S1P) in Swiss 3T3 fibroblasts, but induced apoptosis in B104 neuroblastoma cells. We now investigated its effect in differentiated primary cultured neurons. In contrast to S1P, which had no effect on growth of these postmitotic cells, cis-4-methylsphingosine-phosphate induced apoptosis. Interestingly, both compounds stimulated extracellular regulated kinase (ERK) and also p38 mitogen-activated protein kinase (MAPK). Additionally, both compounds induced an increased expression of cyclin D1 but not of cyclin E. Our results document that the different physiological effects, apoptosis in the case of the accumulating metabolically stable synthetic compound vs. no apoptosis in the case of the short-living S1P, rely only on nuances of impact. In other words both sphingoid phosphates affect similar pathways albeit in a sustained and more pronounced manner in case of the metabolically stable synthetic compound. Experiments with several pharmacological inhibitors indicate that cis-4-methylsphingosine-phosphate-induced neuronal apoptosis is mediated on the one hand by a caspase dependent and p38 MAPK forwarded pathway and on the other hand by an abortive reactivation of the cell cycle, a caspase independent process.
Collapse
Affiliation(s)
- Sven Naetzker
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | |
Collapse
|
7
|
Dragusin M, Gurgui C, Schwarzmann G, Hoernschemeyer J, van Echten-Deckert G. Metabolism of the unnatural anticancer lipid safingol, L-threo-dihydrosphingosine, in cultured cells. J Lipid Res 2003; 44:1772-9. [PMID: 12777464 DOI: 10.1194/jlr.m300160-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the metabolism of radioactively labeled safingol (l-threo-dihydrosphingosine) in primary cultured neurons, B104 neuroblastoma cells, and Swiss 3T3 fibroblasts, and compared it to that of its natural stereoisomer d-erythro-dihydrosphingosine. Both sphingoid bases are used as biosynthetic precursors for complex sphingolipids, albeit to different rates. Whereas a considerable amount of the natural sphingoid base is also directed to the catabolic pathway (20-66%, cell type dependent), only a minor amount of the nonnatural safingol is subjected to catabolic cleavage, most of it being N-acylated to the respective stereochemical variant of dihydroceramide. Interestingly, N-acylation of safingol to l-threo-dihydroceramide is less sensitive to fumonisin B1 than the formation of the natural d-erythro-dihydroceramide. In addition, safingol-derived l-threo-dihydroceramide, unlike its physiologic counterpart, is not desaturated. Most of it either accumulates in the cells (up to 50%) or is used as a biosynthetic precursor of the respective dihydrosphingomyelin (up to 45%). About 5% is, however, glucosylated and channeled into the glycosphingolipid biosynthetic pathway. Our results demonstrate that, despite its nonnatural stereochemistry, safingol is recognized and metabolized preferentially by enzymes of the sphingolipid biosynthetic pathway. Furthermore, our data suggest that the cytotoxic potential of safingol is reduced rather than enhanced via its metabolic conversion.
Collapse
Affiliation(s)
- Mihaela Dragusin
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | |
Collapse
|