1
|
Sailer AL, Jevtic Z, Stoll B, Wörtz J, Sharma K, Urlaub H, Dyall-Smith M, Pfeiffer F, Marchfelder A, Lenz C. Iron starvation results in up-regulation of a probable Haloferax volcanii siderophore transporter. Front Microbiol 2024; 15:1422844. [PMID: 39206359 PMCID: PMC11349517 DOI: 10.3389/fmicb.2024.1422844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The response of the haloarchaeal model organism Haloferax volcanii to iron starvation was analyzed at the proteome level by data-independent acquisition mass spectrometry. Cells grown in minimal medium with normal iron levels were compared to those grown under low iron conditions, with samples being separated into membrane and cytoplasmic fractions in order to focus on import/export processes which are frequently associated with metal homeostasis. Iron starvation not only caused a severe retardation of growth but also altered the levels of many proteins. Using a comprehensive annotated spectral library and data-independent acquisition mass spectrometry (DIA-MS), we found that iron starvation resulted in significant changes to both the membrane and the soluble proteomes of Hfx. volcanii. The most affected protein is the RND family permease HVO_A0467, which is 44-fold enriched in cells grown under iron starvation. The gene HVO_A0467 can be deleted suggesting that it is not essential under standard conditions. Compared to wild type cells the deletion strain shows only slight changes in growth and cell morphologies show no differences. Molecular docking predictions indicated that HVO_A0467 may be an exporter of the siderophore schizokinen for which a potential biosynthesis cluster is encoded in the Hfx. volcanii genome. Together, these findings confirm the importance of iron for archaeal cells and suggest HVO_0467 as a siderophore exporter.
Collapse
Affiliation(s)
| | - Zivojin Jevtic
- Department of Biomedicine, University Children’s Hospital, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Mike Dyall-Smith
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, University of Melbourne, Parkville, VIC, Australia
| | - Friedhelm Pfeiffer
- Biology II, Ulm University, Ulm, Germany
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Martín-Barranco A, Thomine S, Vert G, Zelazny E. A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. PLANT SIGNALING & BEHAVIOR 2021; 16:1975088. [PMID: 34514930 PMCID: PMC8525953 DOI: 10.1080/15592324.2021.1975088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/02/2023]
Abstract
Iron (Fe) is involved in multiple processes that contribute to the maintenance of the cellular homeostasis of all living beings. In photosynthetic organisms, Fe is notably required for photosynthesis. Although iron is generally abundant in the environment, it is frequently poorly bioavailable. This review focuses on the molecular strategies that photosynthetic organisms have evolved to optimize iron acquisition, using Arabidopsis thaliana, rice (Oryza sativa), and some unicellular algae as models. Non-graminaceous plants, including Arabidopsis, take up iron from the soil by an acidification-reduction-transport process (strategy I) requiring specific proteins that were recently shown to associate in a dedicated complex. On the other hand, graminaceous plants, such as rice, use the so-called strategy II to acquire iron, which relies on the uptake of Fe3+ chelated by phytosiderophores that are secreted by the plant into the rhizosphere. However, apart these main strategies, accessory mechanisms contribute to robust iron uptake in both Arabidopsis and rice. Unicellular algae combine reductive and non-reductive mechanisms for iron uptake and present important specificities compared to land plants. Since the majority of the molecular actors required for iron acquisition in algae are not conserved in land plants, questions arise about the evolution of the Fe uptake processes upon land colonization.
Collapse
Affiliation(s)
- Amanda Martín-Barranco
- Institute for Integrative Biology of the Cell (I2BC), UMR9198 CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), UMR9198 CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse 3, Auzeville Tolosane, France
| | - Enric Zelazny
- Biochemistry and Plant Molecular Physiology (BPMP), CNRS, INRAE, Montpellier SupAgro, Université Montpellier, Montpellier, France
| |
Collapse
|
3
|
Martinez-Pastor M, Tonner PD, Darnell CL, Schmid AK. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks. Annu Rev Genet 2018; 51:143-170. [PMID: 29178818 DOI: 10.1146/annurev-genet-120116-023413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are major contributors to biogeochemical cycles, possess unique metabolic capabilities, and resist extreme stress. To regulate the expression of genes encoding these unique programs, archaeal cells use gene regulatory networks (GRNs) composed of transcription factor proteins and their target genes. Recent developments in genetics, genomics, and computational methods used with archaeal model organisms have enabled the mapping and prediction of global GRN structures. Experimental tests of these predictions have revealed the dynamical function of GRNs in response to environmental variation. Here, we review recent progress made in this area, from investigating the mechanisms of transcriptional regulation of individual genes to small-scale subnetworks and genome-wide global networks. At each level, archaeal GRNs consist of a hybrid of bacterial, eukaryotic, and uniquely archaeal mechanisms. We discuss this theme from the perspective of the role of individual transcription factors in genome-wide regulation, how these proteins interact to compile GRN topological structures, and how these topologies lead to emergent, high-level GRN functions. We conclude by discussing how systems biology approaches are a fruitful avenue for addressing remaining challenges, such as discovering gene function and the evolution of GRNs.
Collapse
Affiliation(s)
| | - Peter D Tonner
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Cynthia L Darnell
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
4
|
Schmid AK, Pan M, Sharma K, Baliga NS. Two transcription factors are necessary for iron homeostasis in a salt-dwelling archaeon. Nucleic Acids Res 2010; 39:2519-33. [PMID: 21109526 PMCID: PMC3074139 DOI: 10.1093/nar/gkq1211] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Because iron toxicity and deficiency are equally life threatening, maintaining intracellular iron levels within a narrow optimal range is critical for nearly all known organisms. However, regulatory mechanisms that establish homeostasis are not well understood in organisms that dwell in environments at the extremes of pH, temperature, and salinity. Under conditions of limited iron, the extremophile Halobacterium salinarum, a salt-loving archaeon, mounts a specific response to scavenge iron for growth. We have identified and characterized the role of two transcription factors (TFs), Idr1 and Idr2, in regulating this important response. An integrated systems analysis of TF knockout gene expression profiles and genome-wide binding locations in the presence and absence of iron has revealed that these TFs operate collaboratively to maintain iron homeostasis. In the presence of iron, Idr1 and Idr2 bind near each other at 24 loci in the genome, where they are both required to repress some genes. By contrast, Idr1 and Idr2 are both necessary to activate other genes in a putative a feed forward loop. Even at loci bound independently, the two TFs target different genes with similar functions in iron homeostasis. We discuss conserved and unique features of the Idr1-Idr2 system in the context of similar systems in organisms from other domains of life.
Collapse
Affiliation(s)
- Amy K Schmid
- Duke University, Department of Biology and Institute for Genome Sciences and Policy, Center for Systems Biology, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
5
|
Hubmacher D, Matzanke BF, Anemüller S. Iron-uptake in the Euryarchaeon Halobacterium salinarum. Biometals 2007; 20:539-47. [PMID: 17242866 DOI: 10.1007/s10534-006-9064-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Iron-uptake is well studied in a plethora of pro- and eukaryotic organisms with the exception of Archaea, which thrive mainly in extreme environments. In this study, the mechanism of iron transport in the extremely halophilic Euryarchaeon Halobacterium salinarum strain JW 5 was analyzed. Under low-iron growth conditions no siderophores were detectable in culture supernatants. However, various xenosiderophores support growth of H. salinarum. In [55Fe]-[14C] double-label experiments, H. salinarum displays uptake of iron but not of the chelator citrate. Uptake of iron was inhibited by cyanide and at higher concentrations by Ga. Furthermore, a K(M) for iron uptake in cells of 2.36 microM and a Vmax of approximately 67 pmol Fe/min/mg protein was determined. [55Fe]-uptake kinetics were measured in the absence and presence of Ga. Uptake of iron was inhibited merely at very high Ga concentrations. The results indicate an energy dependent iron uptake process in H. salinarum and suggest reduction of the metal at the membrane level.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Anatomy and Cell Biology, McGill University of Montreal, 3640 University Street, Montreal, QC, Canada H3A 2B2
| | | | | |
Collapse
|
6
|
Reindel S, Schmidt CL, Anemüller S, Matzanke BF. Expression and regulation pattern of ferritin-like DpsA in the archaeon Halobacterium Salinarum. Biometals 2006; 18:387-97. [PMID: 16158231 DOI: 10.1007/s10534-005-3713-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Very recently, an iron-rich protein, DpsA, was isolated from the extreme halophilic euryarchaeon Halobacterium salinarum JW5 and characterized. The amino acid sequence of DpsA is related to Dps proteins which belong structurally to the ferritin superfamily but differ from ferritins in their function and regulation. Employing Northern and Western blot analysis, the expression of DpsA in H. salinarum was examined throughout all growth phases and under a variety of growth conditions (iron deficiency, iron supplied growth, oxidative stress). DpsA shows increasing expression of dpsA mRNA in iron-rich media and under conditions of oxidative stress (H(2)O(2)), whereas under iron-deficient conditions mRNA-levels decrease. This is in contrast to Dps-type proteins the transcription of which is induced under conditions of iron starvation. Northern blot experiments show that the expression pattern of halobacterial DpsA is the same as that found in the few bacterial non-heme ferritin the expression pattern of which has been analyzed so far. Based on Western-blot analysis post-transcriptional regulation, typical of mammalian ferritins, can be excluded. This protein exhibits features of a non-heme type bacterial ferritin although it shares only little sequence similarity with Ftn from E. coli.
Collapse
|