1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024:1-20. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Xu DH, Du JK, Liu SY, Zhang H, Yang L, Zhu XY, Liu YJ. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death Dis 2023; 14:278. [PMID: 37076499 PMCID: PMC10115824 DOI: 10.1038/s41419-023-05800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Dan-Hong Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology, Navy Medical University, Shanghai, 200433, China
| | - Jian-Kui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, China
| | - Shi-Yu Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lu Yang
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, 200433, China.
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Schramm S, Krizanovic N, Roggenbuck U, Jöckel KH, Herring A, Keyvani K, Jokisch M. Blood Kallikrein-8 and Non-Amnestic Mild Cognitive Impairment: An Exploratory Study. J Alzheimers Dis Rep 2023; 7:327-337. [DOI: 10.3233/adr-220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Blood kallikrein-8 is supposed to be a biomarker for mild cognitive impairment (MCI) due to Alzheimer’s disease (AD), a precursor of AD dementia. Little is known about the association of kallikrein-8 and non-AD type dementias. Objective: To investigate whether blood kallikrein-8 is elevated in individuals with non-amnestic MCI (naMCI), which has a higher probability to progress to a non-AD type dementia, compared with cognitively unimpaired (CU) controls. Methods: We measured blood kallikrein-8 at ten-year follow-up (T2) in 75 cases and 75 controls matched for age and sex who were participants of the population-based Heinz Nixdorf Recall study (baseline: 2000–2003). Cognitive performance was assessed in a standardized manner at five (T1) and ten-year follow-up. Cases were CU or had subjective cognitive decline (SCD) at T1 and had naMCI at T2. Controls were CU at both follow-ups. The association between kallikrein-8 (per 500 pg/ml increase) and naMCI was estimated using conditional logistic regression: odds ratios (OR) and 95% confidence intervals (95% CI) were determined, adjusted for inter-assay variability and freezing duration. Results: Valid kallikrein-8 values were measured in 121 participants (45% cases, 54.5% women, 70.5±7.1 years). In cases, the mean kallikrein-8 was higher than in controls (922±797 pg/ml versus 884±782 pg/ml). Kallikrein-8 was not associated with having naMCI compared to being CU (adjusted; OR: 1.03 [95% CI: 0.80–1.32]). Conclusion: This is the first population-based study that shows that blood kallikrein-8 tends not to be elevated in individuals with naMCI compared with CU. This adds to the evidence of the possible AD specificity of kallikrein-8.
Collapse
Affiliation(s)
- Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nela Krizanovic
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martha Jokisch
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Du JK, Yu Q, Liu YJ, Du SF, Huang LY, Xu DH, Ni X, Zhu XY. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Am J Cancer Res 2021; 11:4207-4231. [PMID: 33754057 PMCID: PMC7977470 DOI: 10.7150/thno.48530] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Among all the diabetic complications, diabetic cardiomyopathy, which is characterized by myocyte loss and myocardial fibrosis, is the leading cause of mortality and morbidity in diabetic patients. Tissue kallikrein-related peptidases (KLKs) are secreted serine proteases, that have distinct and overlapping roles in the pathogenesis of cardiovascular diseases. However, whether KLKs are involved in the development of diabetic cardiomyopathy remains unknown.The present study aimed to determine the role of a specific KLK in the initiation of endothelial-to-mesenchymal transition (EndMT) during the pathogenesis of diabetic cardiomyopathy. Methods and Results-By screening gene expression profiles of KLKs, it was found that KLK8 was highly induced in the myocardium of mice with streptozotocin-induced diabetes. KLK8 deficiency attenuated diabetic cardiac fibrosis, and rescued the impaired cardiac function in diabetic mice. Small interfering RNA (siRNA)-mediated KLK8 knockdown significantly attenuated high glucose-induced endothelial damage and EndMT in human coronary artery endothelial cells (HCAECs). Diabetes-induced endothelial injury and cardiac EndMT were significantly alleviated in KLK8-deficient mice. In addition, transgenic overexpression of KLK8 led to interstitial and perivascular cardiac fibrosis, endothelial injury and EndMT in the heart. Adenovirus-mediated overexpression of KLK8 (Ad-KLK8) resulted in increases in endothelial cell damage, permeability and transforming growth factor (TGF)-β1 release in HCAECs. KLK8 overexpression also induced EndMT in HCAECs, which was alleviated by a TGF-β1-neutralizing antibody. A specificity protein-1 (Sp-1) consensus site was identified in the human KLK8 promoter and was found to mediate the high glucose-induced KLK8 expression. Mechanistically, it was identified that the vascular endothelial (VE)-cadherin/plakoglobin complex may associate with KLK8 in HCAECs. KLK8 cleaved the VE-cadherin extracellular domain, thus promoting plakoglobin nuclear translocation. Plakoglobin was required for KLK8-induced EndMT by cooperating with p53. KLK8 overexpression led to plakoglobin-dependent association of p53 with hypoxia inducible factor (HIF)-1α, which further enhanced the transactivation effect of HIF-1α on the TGF-β1 promoter. KLK8 also induced the binding of p53 with Smad3, subsequently promoting pro-EndMT reprogramming via the TGF-β1/Smad signaling pathway in HCAECs. The in vitro and in vivo findings further demonstrated that high glucose may promote plakoglobin-dependent cooperation of p53 with HIF-1α and Smad3, subsequently increasing the expression of TGF-β1 and the pro-EndMT target genes of the TGF-β1/Smad signaling pathway in a KLK8-dependent manner. Conclusions: The present findings uncovered a novel pro-EndMT mechanism during the pathogenesis of diabetic cardiac fibrosis via the upregulation of KLK8, and may contribute to the development of future KLK8-based therapeutic strategies for diabetic cardiomyopathy.
Collapse
|
5
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
6
|
Bukowski L, Chernomorchenko AMF, Starnawska A, Mors O, Staunstrup NH, Børglum AD, Qvist P. Neuropsin in mental health. J Physiol Sci 2020; 70:26. [PMID: 32414324 PMCID: PMC10717651 DOI: 10.1186/s12576-020-00753-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 02/02/2023]
Abstract
Neuropsin is a brain-expressed extracellular matrix serine protease that governs synaptic plasticity through activity-induced proteolytic cleavage of synaptic proteins. Its substrates comprise several molecules central to structural synaptic plasticity, and studies in rodents have documented its role in cognition and the behavioral and neurobiological response to stress. Intriguingly, differential usage of KLK8 (neuropsin gene) splice forms in the fetal and adult brain has only been reported in humans, suggesting that neuropsin may serve a specialized role in human neurodevelopment. Through systematic interrogation of large-scale genetic data, we review KLK8 regulation in the context of mental health and provide a summary of clinical and preclinical evidence supporting a role for neuropsin in the pathogenesis of mental illness.
Collapse
Affiliation(s)
- Lina Bukowski
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
| | - Ana M F Chernomorchenko
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
| | - Anna Starnawska
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Nicklas H Staunstrup
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anders D Børglum
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Per Qvist
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Structural determinants of specificity and regulation of activity in the allosteric loop network of human KLK8/neuropsin. Sci Rep 2018; 8:10705. [PMID: 30013126 PMCID: PMC6048020 DOI: 10.1038/s41598-018-29058-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
Human KLK8/neuropsin, a kallikrein-related serine peptidase, is mostly expressed in skin and the hippocampus regions of the brain, where it regulates memory formation by synaptic remodeling. Substrate profiles of recombinant KLK8 were analyzed with positional scanning using fluorogenic tetrapeptides and the proteomic PICS approach, which revealed the prime side specificity. Enzyme kinetics with optimized substrates showed stimulation by Ca2+ and inhibition by Zn2+, which are physiological regulators. Crystal structures of KLK8 with a ligand-free active site and with the inhibitor leupeptin explain the subsite specificity and display Ca2+ bound to the 75-loop. The variants D70K and H99A confirmed the antagonistic role of the cation binding sites. Molecular docking and dynamics calculations provided insights in substrate binding and the dual regulation of activity by Ca2+ and Zn2+, which are important in neuron and skin physiology. Both cations participate in the allosteric surface loop network present in related serine proteases. A comparison of the positional scanning data with substrates from brain suggests an adaptive recognition by KLK8, based on the tertiary structures of its targets. These combined findings provide a comprehensive picture of the molecular mechanisms underlying the enzyme activity of KLK8.
Collapse
|
8
|
Dorn J, Bayani J, Yousef GM, Yang F, Magdolen V, Kiechle M, Diamandis EP, Schmitt M. Clinical utility of kallikrein-related peptidases (KLK) in urogenital malignancies. Thromb Haemost 2017; 110:408-22. [DOI: 10.1160/th13-03-0206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/25/2013] [Indexed: 12/19/2022]
Abstract
SummaryKallikrein-related peptidases (KLK), which represent a major tissue-associated proteolytic system, stand for a rich source of biomarkers that may allow molecular classification, early diagnosis and prognosis of human malignancies as well as prediction of response or failure to cancer-directed drugs. International research points to an important role of certain KLKs in female and male urogenital tract malignancies, in addition to cancers of the lung, brain, skin, head and neck, and the gastrointestinal tract. Regarding the female/male urogenital tract, remarkably, all of the KLKs are expressed in the normal prostate, testis, and kidney whereas the uterus, the ovary, and the urinary bladder are expressing a limited number of KLKs only. Most of the information regarding KLK expression in tumour-affected organs is available for ovarian cancer; all of the 12 KLKs tested so far were found to be elevated in the malignant state, depicting them as valuable biomarkers to distinguish between the normal and the cancerous phenotype. In contrast, for kidney cancer, a series of KLKs was found to be downregulated, while other KLKs were not expressed. Evidently, depending on the type of cancer or cancer stage, individual KLKs may show characteristics of a Janus-faced behaviour, by either expanding or inhibiting cancer progression and metastasis.
Collapse
|
9
|
Biochemical and functional characterization of the human tissue kallikrein 9. Biochem J 2017; 474:2417-2433. [DOI: 10.1042/bcj20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Human tissue kallikrein 9 (KLK9) is a member of the kallikrein-related family of proteases. Despite its known expression profile, much less is known about the functional roles of this protease and its implications in normal physiology and disease. We present here the first data on the biochemical characterization of KLK9, investigate parameters that affect its enzymatic activity (such as inhibitors) and provide preliminary insights into its putative substrates. We show that mature KLK9 is a glycosylated chymotrypsin-like enzyme with strong preference for tyrosine over phenylalanine at the P1 cleavage position. The enzyme activity is enhanced by Mg2+ and Ca2+, but is reversibly attenuated by Zn2+. KLK9 is inhibited in vitro by many naturally occurring or synthetic protease inhibitors. Using a combination of degradomic and substrate specificity assays, we identified candidate KLK9 substrates in two different epithelial cell lines [the non-tumorigenic human keratinocyte cells (HaCaT) and the tumorigenic tongue squamous carcinoma cells (SCC9)]. Two potential KLK9 substrates [KLK10 and midkine (MDK)] were subjected to further validation. Taken together, our data delineate some functional and biochemical properties of KLK9 for future elucidation of the role of this enzyme in health and disease.
Collapse
|
10
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
11
|
Neuropsin Inactivation Has Protective Effects against Depressive-Like Behaviours and Memory Impairment Induced by Chronic Stress. PLoS Genet 2016; 12:e1006356. [PMID: 27701413 PMCID: PMC5049781 DOI: 10.1371/journal.pgen.1006356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 09/11/2016] [Indexed: 11/24/2022] Open
Abstract
Mounting evidence suggests the interaction between stress and genetics contribute to the development of depressive symptoms. Currently, the molecular mechanisms mediating this process are poorly understood, hindering the development of new clinical interventions. Here, we investigate the interaction between neuropsin, a serine protease, and chronic stress on the development of depressive-like behaviours in mice. We found no difference in baseline behaviour between neuropsin knockout and wild-type mice. However, our results show that neuropsin knockout mice are protected against the development of depressive-like behaviours and memory impairment following chronic stress. We hypothesised that this difference in behaviour may be due to an interaction between neuropsin and elevated plasma corticosterone. To test this, we subjected mice to chronic corticosterone injections. These injections resulted in changes to hippocampal structure similar to that observed following chronic stress. We found that inactivation of neuropsin limits the extent of these anatomical changes in both the chronic stress and the corticosterone injection exposed cohorts. We next used viral vectors to knockdown or overexpress neuropsin in the hippocampus to confirm the results of the KO study. Additionally, we found that inactivation of neuropsin limited glutamate dysregulation, associated with increased generation of reactive oxygen species, resulting from prolonged elevated plasma corticosterone. In this study, we demonstrate that neuropsin inactivation protects against the impairment of hippocampal functions and the depressive-like behaviour induced by chronic stress or high levels of corticosterone. Consequently, we suggest neuropsin is a potential target for clinical interventions for the management of stress disorders. Depression is a medical condition that results in significant morbidity, mortality and reduced quality of life. Understanding the molecular mechanism in which stress leads to depression is essential for the discovery of new clinical interventions. Currently, despite considerable research, the mechanisms underlying stress-related illnesses are unclear. In this study, we reveal a novel link between the interaction of serine protease neuropsin with corticosterone and the development of chronic stress induced depressive-like behaviour. We found no difference in baseline behaviour between neuropsin knockout and wild-type mice. However, our results show that neuropsin knockout mice are protected against the development of depressive-like behaviours and memory impairment following chronic stress. We suggest the dysregulation of the glutamate system may lead to increased reactive oxygen species and act as a possible mechanism in which stress changes hippocampal architecture. We found that inactivation of neuropsin limits the extent of these anatomical changes in both chronic stress and corticosterone injection exposed cohorts. In this study, we outline a mechanism that may open new possibilities for the treatment of stress-related psychiatric disorders.
Collapse
|
12
|
Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy. Sci Rep 2016; 7:20024. [PMID: 26823023 PMCID: PMC4731818 DOI: 10.1038/srep20024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling.
Collapse
|
13
|
Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells. J Virol 2015; 89:7038-52. [PMID: 25926655 DOI: 10.1128/jvi.00234-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures.
Collapse
|
14
|
Structure modeling and hybrid virtual screening study of Alzheimer’s associated protease kallikrein 8 for the identification of novel inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Caliendo G, Santagada V, Perissutti E, Severino B, Fiorino F, Frecentese F, Juliano L. Kallikrein protease activated receptor (PAR) axis: an attractive target for drug development. J Med Chem 2012; 55:6669-86. [PMID: 22607152 DOI: 10.1021/jm300407t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Caliendo
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Eissa A, Amodeo V, Smith CR, Diamandis EP. Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J Biol Chem 2010; 286:687-706. [PMID: 20940292 DOI: 10.1074/jbc.m110.125310] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg(164). Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1'-P2'. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied.
Collapse
Affiliation(s)
- Azza Eissa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
17
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
18
|
Functional characterization of the human-specific (type II) form of kallikrein 8, a gene involved in learning and memory. Cell Res 2009; 19:259-67. [PMID: 19125171 DOI: 10.1038/cr.2009.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Kallikrein 8 (KLK8) is a serine protease functioning in the central nervous system, and essential in many aspects of neuronal activities. Sequence comparison and gene expression analysis among diverse primate species identified a human-specific splice form of KLK8 (type II) with preferential expression in the human brain, which may contribute to the origin of human cognition. To gain insights into the physiological and biochemical role of this novel form, we conducted functional analyses of human type II KLK8. Our results show that type II KLK8 is abundantly expressed in human embryonic stem cells and in embryo brain samples, suggesting a potential role in embryogenesis. There are dramatic expression variations in different individuals and brain regions, which is a reflection of its dynamic role in neural activities. Furthermore, the transcription start site (TSS) of KLK8 is tissue-specific, with a brain-specific TSS found in humans indicating functional specialization. Our in vitro biochemical assay shows that there is a type II-specific intermediate protein form, although the processed end-point enzymes are the same for both type I and type II KLK8, suggesting that the emergence of type II KLK8 in the human brain likely leads to functional modifications of KLK8.
Collapse
|
19
|
Abstract
The human kallikrein 8 protein (KLK8) is expressed in many normal tissues including esophagus, skin, testis, tonsil, kidney, breast, and salivary gland, and is found in biological fluids including breast milk, amniotic fluid, seminal fluid and serum. It has also been shown to be a biomarker and prognostic factor for breast cancer. The aim of this study was to determine whether KLK8 is expressed in salivary gland tissues and salivary gland tumors (both benign and malignant), in order to compare normal with tumor tissues. Pleomorphic adenomas, adenoid cystic carcinomas, polymorphous low grade adenocarcinomas, acinic cell carcinomas, mucoepidermoid carcinomas, and adenocarcinomas NOS of both minor and major salivary glands were examined. The results of this study indicate that most salivary gland tumors show high levels of expression of KLK8.
Collapse
|
20
|
Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol 2007; 1:269-87. [PMID: 19383303 DOI: 10.1016/j.molonc.2007.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022] Open
Abstract
The Kallikrein-related peptidase (KLK) family consists of fifteen conserved serine proteases that form the largest contiguous cluster of proteases in the human genome. While primarily recognized for their clinical utilities as potential disease biomarkers, new compelling evidence suggests that this family plays a significant role in various physiological processes, including skin desquamation, semen liquefaction, neural plasticity, and body fluid homeostasis. KLK activation is believed to be mediated through highly organized proteolytic cascades, regulated through a series of feedback loops, inhibitors, auto-degradation and internal cleavages. Gene expression is mainly hormone-dependent, even though transcriptional epigenetic regulation has also been reported. These regulatory mechanisms are integrated with various signaling pathways to mediate multiple functions. Dysregulation of these pathways has been implicated in a large number of neoplastic and non-neoplastic pathological conditions. This review highlights our current knowledge of structural/phylogenetic features, functional role and regulatory/signaling mechanisms of this important family of enzymes.
Collapse
Affiliation(s)
- Nashmil Emami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Pampalakis G, Sotiropoulou G. Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer. Biochim Biophys Acta Rev Cancer 2007; 1776:22-31. [PMID: 17629406 DOI: 10.1016/j.bbcan.2007.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 06/02/2007] [Accepted: 06/04/2007] [Indexed: 11/23/2022]
Abstract
Human tissue kallikreins (KLKs or kallikrein-related peptidases) are a subgroup of extracellular serine proteases that act on a wide variety of physiological substrates, while they display aberrant expression patterns in certain types of cancer. Differential expression patterns lead to the exploitation of these proteins as new cancer biomarkers for hormone-dependent malignancies, in particular. The prostate-specific antigen or kallikrein-related peptidase 3 (PSA/KLK3) is an established tumor marker for the diagnosis and monitoring of prostate cancer. It is well documented that specific KLK genes are co-expressed in tissues and in various pathologies suggesting their participation in complex proteolytic cascades. Here, we review the currently established knowledge on the involvement of KLK proteolytic cascades in the regulation of physiological and pathological processes in prostate tissue and in skin. It is well established that the activity of KLKs is often regulated by auto-activation and subsequent autolytic internal cleavage leading to enzymatic inactivation, as well as by inhibitory serpins or by allosteric inhibition by zinc ions. Redistribution of zinc ions and alterations in their concentration due to physiological or pathological reasons activates specific KLKs initiating the kallikrein cascade(s). Recent studies on kallikrein substrate specificity allowed for the construction of a kallikrein interaction network involved in semen liquefaction and prostate cancer, as well as in skin pathologies, such as skin desquamation, psoriasis and cancer. Furthermore, we discuss the crosstalks between known proteolytic pathways and the kallikrein cascades, with emphasis on the activation of plasmin and its implications in prostate cancer. These findings may have clinical implications for the underlying molecular mechanism and management of cancer and other disorders in which KLK activity is elevated.
Collapse
|
22
|
Emami N, Diamandis EP. Human tissue kallikreins: A road under construction. Clin Chim Acta 2007; 381:78-84. [PMID: 17382920 DOI: 10.1016/j.cca.2007.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 01/28/2023]
Abstract
BACKGROUND The human tissue kallikrein gene family, located at chromosome 19q13.4, is the largest contiguous family of proteases in the human genome. The locus encodes all 15 members of the family, 13 of which have been reported as potential biomarkers for several carcinomas and other non-neoplastic diseases. Kallikreins are expressed by a wide range of tissues and implicated in a number of physiological functions, including skin desquamation, semen liquefaction, neural plasticity and the regulation of blood pressure. Kallikrein function is regulated at various levels, including transcription, translation and post-translation. The proteolytic activity of kallikreins is believed to be cascade mediated and may cross-talk with other proteases. These cascades are highly regulated through a series of feedback loops, inhibitors, (auto) degradation and internal cleavage. Uncontrolled proteolytic activity of kallikreins is implicated in a large number of neoplastic and non-neoplastic pathological conditions. CONCLUSIONS As our understanding of their regulatory and functional mechanisms continues to expand, kallikreins are expected to become novel targets for the design of new therapeutics.
Collapse
Affiliation(s)
- Nashmil Emami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Paliouras M, Borgono C, Diamandis EP. Human tissue kallikreins: the cancer biomarker family. Cancer Lett 2007; 249:61-79. [PMID: 17275179 DOI: 10.1016/j.canlet.2006.12.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Human tissue kallikreins (KLKs) are attracting increased attention due to their role as biomarkers for the screening, diagnosis, prognosis, and monitoring of various cancers including those of the prostate, ovarian, breast, testicular, and lung. Human tissue kallikrein genes represent the largest contiguous group of proteases within the human genome. Originally thought to consist of three genes, the identification of the human kallikrein locus has expanded this number to fifteen. These genes, and their encoded proteins, share a high degree of homology and are expressed in different tissues. Prostate-specific antigen (PSA), the most commonly known kallikrein, is a useful biomarker for prostate cancer. Several other kallikreins, including kallikreins 2 (KLK2) and 11 (KLK11) are emerging as complementary prostate cancer biomarkers. Along with these kallikreins, several others have been implicated in the other cancers. For example, KLK5, 6, 7, 10, 11, and 14 are emerging biomarkers for ovarian cancer. The identification of kallikrein substrates and the development of proteolytic cascade models implicate kallikrein proteins in cancer progression. This review describes the current status of kallikreins as cancer biomarkers.
Collapse
Affiliation(s)
- Miltiadis Paliouras
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
24
|
Borgoño CA, Michael IP, Shaw JLV, Luo LY, Ghosh MC, Soosaipillai A, Grass L, Katsaros D, Diamandis EP. Expression and Functional Characterization of the Cancer-related Serine Protease, Human Tissue Kallikrein 14. J Biol Chem 2007; 282:2405-22. [PMID: 17110383 DOI: 10.1074/jbc.m608348200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated.
Collapse
Affiliation(s)
- Carla A Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|