1
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Naryzhnaya NV, Voronkov NS, Ryabov VV, Boshchenko AA, Khaliulin I, Prasad NR, Fu F, Pei JM, Logvinov SV, Oeltgen PR. Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms. Curr Cardiol Rev 2022; 18:63-79. [PMID: 35422224 PMCID: PMC9896422 DOI: 10.2174/1573403x18666220413121730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Cullen PP, Tsui SS, Caplice NM, Hinchion JA. A state-of-the-art review of the current role of cardioprotective techniques in cardiac transplantation. Interact Cardiovasc Thorac Surg 2021; 32:683-694. [PMID: 33971665 DOI: 10.1093/icvts/ivaa333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The use of 'extended criteria' donor hearts and reconditioned hearts from donation after circulatory death has corresponded with an increase in primary graft dysfunction, with ischaemia-reperfusion injury being a major contributing factor in its pathogenesis. Limiting ischaemia-reperfusion injury through optimising donor heart preservation may significantly improve outcomes. We sought to review the literature to evaluate the evidence for this. METHODS A review of the published literature was performed to assess the potential impact of organ preservation optimisation on cardiac transplantation outcomes. RESULTS Ischaemia-reperfusion injury is a major factor in myocardial injury during transplantation with multiple potential therapeutic targets. Innate survival pathways have been identified, which can be mimicked with pharmacological conditioning. Although incompletely understood, discoveries in this domain have yielded extremely encouraging results with one of the most exciting prospects being the synergistic effect of selected agents. Ex situ heart perfusion is an additional promising adjunct. CONCLUSIONS Cardiac transplantation presents a unique opportunity to perfuse the whole heart before, or immediately after, the onset of ischaemia, thus maximising the potential for global cardioprotection while limiting possible systemic side effects. While clinical translation in the setting of myocardial infarction has often been disappointing, cardiac transplantation may afford the opportunity for cardioprotection to finally deliver on its preclinical promise.
Collapse
Affiliation(s)
- Paul P Cullen
- Department of Cardiothoracic Surgery, Cork University Hospital, Cork, Ireland
| | - Steven S Tsui
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Noel M Caplice
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - John A Hinchion
- Department of Cardiothoracic Surgery, Cork University Hospital, Cork, Ireland
| |
Collapse
|
3
|
Lamothe SM, Guo J, Li W, Yang T, Zhang S. The Human Ether-a-go-go-related Gene (hERG) Potassium Channel Represents an Unusual Target for Protease-mediated Damage. J Biol Chem 2016; 291:20387-401. [PMID: 27502273 DOI: 10.1074/jbc.m116.743138] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/22/2022] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr), which is important for cardiac repolarization. Dysfunction of hERG causes long QT syndrome and sudden death, which occur in patients with cardiac ischemia. Cardiac ischemia is also associated with activation, up-regulation, and secretion of various proteolytic enzymes. Here, using whole-cell patch clamp and Western blotting analysis, we demonstrate that the hERG/IKr channel was selectively cleaved by the serine protease, proteinase K (PK). Using molecular biology techniques including making a chimeric channel between protease-sensitive hERG and insensitive human ether-a-go-go (hEAG), as well as application of the scorpion toxin BeKm-1, we identified that the S5-pore linker of hERG is the target domain for proteinase K cleavage. To investigate the physiological relevance of the unique susceptibility of hERG to proteases, we show that cardiac ischemia in a rabbit model was associated with a reduction in mature ERG expression and an increase in the expression of several proteases, including calpain. Using cell biology approaches, we found that calpain-1 was actively released into the extracellular milieu and cleaved hERG at the S5-pore linker. Using protease cleavage-predicting software and site-directed mutagenesis, we identified that calpain-1 cleaves hERG at position Gly-603 in the S5-pore linker of hERG. Clarification of protease-mediated damage of hERG extends our understanding of hERG regulation. Damage of hERG mediated by proteases such as calpain may contribute to ischemia-associated QT prolongation and sudden cardiac death.
Collapse
Affiliation(s)
- Shawn M Lamothe
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jun Guo
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wentao Li
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tonghua Yang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shetuan Zhang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
4
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
5
|
Chen Q, Lesnefsky EJ. Heart mitochondria and calpain 1: Location, function, and targets. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2372-8. [PMID: 26259540 DOI: 10.1016/j.bbadis.2015.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
Calpain 1 is an ubiquitous Ca(2+)-dependent cysteine protease. Although calpain 1 has been found in cardiac mitochondria, the exact location within mitochondrial compartments and its function remain unclear. The aim of the current review is to discuss the localization of calpain 1 in different mitochondrial compartments in relationship to its function, especially in pathophysiological conditions. Briefly, mitochondrial calpain 1 (mit-CPN1) is located within the intermembrane space and mitochondrial matrix. Activation of the mit-CPN1 within intermembrane space cleaves apoptosis inducing factor (AIF), whereas the activated mit-CPN1 within matrix cleaves complex I subunits and metabolic enzymes. Inhibition of the mit-CPN1 could be a potential strategy to decrease cardiac injury during ischemia-reperfusion.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine (Division of Cardiology, Pauley Heart Center), Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Edward J Lesnefsky
- Department of Medicine (Division of Cardiology, Pauley Heart Center), Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298, United States; McGuire VA Medical Center, Richmond, VA 23249, United States
| |
Collapse
|
6
|
Neuhof C, Neuhof H. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 2014; 6:638-652. [PMID: 25068024 PMCID: PMC4110612 DOI: 10.4330/wjc.v6.i7.638] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction.
Collapse
|
7
|
Millholland MG, Mishra S, Dupont CD, Love MS, Patel B, Shilling D, Kazanietz MG, Foskett JK, Hunter CA, Sinnis P, Greenbaum DC. A host GPCR signaling network required for the cytolysis of infected cells facilitates release of apicomplexan parasites. Cell Host Microbe 2013; 13:15-28. [PMID: 23332153 DOI: 10.1016/j.chom.2012.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/08/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022]
Abstract
Following intracellular replication, the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii cause host cell cytolysis to facilitate parasite release and disease progression. Parasite exit from infected cells requires the interplay of parasite-derived proteins and host actin cytoskeletal changes; however, the host proteins underlying these changes remain obscure. We report the identification of a Gα(q)-coupled host-signaling cascade required for the egress of both P. falciparum and T. gondii. Gα(q)-coupled signaling results in protein kinase C (PKC)-mediated loss of the host cytoskeletal protein adducin and weakening of the cellular cytoskeleton. This cytoskeletal compromise induces catastrophic Ca(2+) influx mediated by the mechanosensitive cation channel TRPC6, which activates host calpain that proteolyzes the host cytoskeleton allowing parasite release. Reinforcing the feasibility of targeting host proteins as an antiparasitic strategy, mammalian PKC inhibitors demonstrated activity in murine models of malaria and toxoplasmosis. Importantly, an orally bioavailable PKC inhibitor prolonged survival in an experimental cerebral malaria model.
Collapse
Affiliation(s)
- Melanie G Millholland
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Inserte J, Hernando V, Garcia-Dorado D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 2012; 96:23-31. [PMID: 22787134 DOI: 10.1093/cvr/cvs232] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss of calcium (Ca(2+)) homeostasis contributes through different mechanisms to cell death occurring during the first minutes of reperfusion. One of them is an unregulated activation of a variety of Ca(2+)-dependent enzymes, including the non-lysosomal cysteine proteases known as calpains. This review analyses the involvement of the calpain family in reperfusion-induced cardiomyocyte death. Calpains remain inactive before reperfusion due to the acidic pHi and increased ionic strength in the ischaemic myocardium. However, inappropriate calpain activation occurs during myocardial reperfusion, and subsequent proteolysis of a wide variety of proteins contributes to the development of contractile dysfunction and necrotic cell death by different mechanisms, including increased membrane fragility, further impairment of Na(+) and Ca(2+) handling, and mitochondrial dysfunction. Recent studies demonstrating that calpain inhibition contributes to the cardioprotective effects of preconditioning and postconditioning, and the beneficial effects obtained with new and more selective calpain inhibitors added at the onset of reperfusion, point to the potential cardioprotective value of therapeutic strategies designed to prevent calpain activation.
Collapse
Affiliation(s)
- Javier Inserte
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
9
|
Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 2012; 94:168-80. [PMID: 22499772 DOI: 10.1093/cvr/cvs116] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reperfusion may induce additional cell death in patients with acute myocardial infarction receiving primary angioplasty or thrombolysis. Altered intracellular Ca(2+) handling was initially considered an essential mechanism of reperfusion-induced cardiomyocyte death. However, more recent studies have demonstrated the importance of Ca(2+)-independent mechanisms that converge on mitochondrial permeability transition (MPT) and are shared by cardiomyocytes and other cell types. This article analyses the importance of Ca(2+)-dependent cell death in light of these new observations. Altered Ca(2+) handling includes increased cytosolic Ca(2+) levels, leading to activation of calpain-mediated proteolysis and sarcoplasmic reticulum-driven oscillations; this can induce hypercontracture, but also MPT due to the privileged Ca(2+) transfer between sarcoplasmic reticulum and mitochondria through cytosolic Ca(2+) microdomains. In the opposite direction, permeability transition can worsen altered Ca(2+) handling and favour hypercontracture. Ca(2+) appears to play an important role in cell death during the initial minutes of reperfusion, particularly after brief periods of ischaemia. Developing effective and safe treatments to prevent Ca(2+)-mediated cardiomyocyte death in patients with transient ischaemia, by targeting Ca(2+) influx, intracellular Ca(2+) handling, or Ca(2+)-induced cell death effectors, is an unmet challenge with important therapeutic implications and large potential clinical impact.
Collapse
|
10
|
The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 2011; 436:493-505. [PMID: 21410437 PMCID: PMC3195442 DOI: 10.1042/bj20101957] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidized cytochrome c is a powerful superoxide scavenger within the mitochondrial IMS (intermembrane space), but the importance of this role in situ has not been well explored. In the present study, we investigated this with particular emphasis on whether loss of cytochrome c from mitochondria during heart ischaemia may mediate the increased production of ROS (reactive oxygen species) during subsequent reperfusion that induces mPTP (mitochondrial permeability transition pore) opening. Mitochondrial cytochrome c depletion was induced in vitro with digitonin or by 30 min ischaemia of the perfused rat heart. Control and cytochrome c-deficient mitochondria were incubated with mixed respiratory substrates and an ADP-regenerating system (State 3.5) to mimic physiological conditions. This contrasts with most published studies performed with a single substrate and without significant ATP turnover. Cytochrome c-deficient mitochondria produced more H2O2 than control mitochondria, and exogenous cytochrome c addition reversed this increase. In the presence of increasing [KCN] rates of H2O2 production by both pre-ischaemic and end-ischaemic mitochondria correlated with the oxidized cytochrome c content, but not with rates of respiration or NAD(P)H autofluorescence. Cytochrome c loss during ischaemia was not mediated by mPTP opening (cyclosporine-A insensitive), neither was it associated with changes in mitochondrial Bax, Bad, Bak or Bid. However, bound HK2 (hexokinase 2) and Bcl-xL were decreased in end-ischaemic mitochondria. We conclude that cytochrome c loss during ischaemia, caused by outer membrane permeabilization, is a major determinant of H2O2 production by mitochondria under pathophysiological conditions. We further suggest that in hypoxia, production of H2O2 to activate signalling pathways may be also mediated by decreased oxidized cytochrome c and less superoxide scavenging.
Collapse
|
11
|
Disruption of chronic cariporide treatment abrogates myocardial ion homeostasis during acute ischemia reperfusion. J Cardiovasc Pharmacol 2011; 58:284-94. [PMID: 21697734 DOI: 10.1097/fjc.0b013e318223ebb2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cariporide, an Na/H exchanger inhibitor, is a drug with cardioprotective properties. However, chronic treatment with cariporide may modify the protein phenotype of the cardiomyocytes. Disruption of the equilibrium between a cariporide-modified phenotype and the supply of cariporide could be deleterious. The aim of this study was to test the effects of this equilibrium rupture (EqR) on cardiac function at baseline and acute ischemia reperfusion. Rats were chronically treated with cariporide (2.5 mg·kg·d) or with placebo for 21 days, after which isolated Langendorff-mode heart perfusion experiments utilized cariporide-free buffer. During this type of perfusion, the drug is rapidly cleared from the cellular environment. After 30 minutes of stabilization, the hearts were subjected to global zero-flow ischemia (25 minutes) followed by reperfusion (45 minutes). Measures of mechanical function, oxygen consumption, lactate plus pyruvate, CO2 and proton release into the coronary effluent were determined. The gene and protein expression of proton extruders was also evaluated. Chronic cariporide administration followed by EqR reduced the expression of the Na/H exchanger, increased the expression of the HCO3 or Na exchanger, decreased monocarboxylate/H carrier expression, reduced the lactate plus pyruvate release but did not change the glucose oxidation rate and mechanical function compared with baseline conditions. The resulting low glycolytic rate was associated with a stronger contracture during ischemia. During reperfusion, the early release of acidic forms was higher and redirected toward the use of the Na/H and HCO3 /Na exchangers to the detriment of the safe monocarboxylate/H carrier. Both phenomena were assumed to increase the Na uptake and activate the Na/Ca exchanger, resulting in Na and Ca overload and further cellular damage. This explains the impaired recovery of the contractile function observed in the EqR group during reperfusion. In conclusion, although cariporide is usually cardioprotective, a disruption of its chronic treatment followed by an ischemia/reperfusion event can become deleterious.
Collapse
|
12
|
Inserte J, Ruiz-Meana M, Rodríguez-Sinovas A, Barba I, Garcia-Dorado D. Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. Antioxid Redox Signal 2011; 14:923-39. [PMID: 20578958 DOI: 10.1089/ars.2010.3312] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ischemic postconditioning (PoCo) has been proven to be a feasible approach to attenuate reperfusion injury and enhance myocardial salvage in patients with acute myocardial infarction, but its mechanisms have not been completely elucidated yet. Recent studies demonstrate that PoCo may delay the recovery of intracellular pH during initial reperfusion, and that its ability to limit infarct size critically depends on this effect. Prolongation of postischemic intracellular acidosis inhibits hypercontracture, mitochondrial permeability transition, calpain-mediated proteolysis, and gap junction-mediated spread of injury during the first minutes of reflow. This role of prolonged acidosis does not exclude the participation of other pathways in PoCo-induced cardioprotection. On the contrary, it may allow these pathways to act by preventing immediate reperfusion-induced cell death. Moreover, the existence of interactions between intracellular acidosis and endogenous protection signaling cannot be excluded and needs to be investigated. The role of prolonged acidosis in PoCo cardioprotection has important implications in the design of optimal PoCo protocols and in the translation of cardioprotective strategies to patients with on-going myocardial infarction receiving coronary reperfusion.
Collapse
Affiliation(s)
- Javier Inserte
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Hernando V, Inserte J, Sartório CL, Parra VM, Poncelas-Nozal M, Garcia-Dorado D. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 2010; 49:271-9. [PMID: 20211186 DOI: 10.1016/j.yjmcc.2010.02.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/09/2010] [Accepted: 02/28/2010] [Indexed: 12/13/2022]
Abstract
Calpains contribute to reperfusion-induced myocardial cell death. However, it remains controversial whether its activation occurs during ischemia or reperfusion. We investigated the regulation and time-course of calpain activation secondary to transient ischemia and the efficacy of its inhibition at reperfusion as a therapeutic strategy to limit infarct size. In isolated rat hearts (Sprague-Dawley), ischemia induced a time-dependent translocation of m-calpain to the membrane that was not associated with calpain activation as assessed by proteolysis of its substrate alpha-fodrin. Translocation of calpain was dependent on Ca(2+) entry through reverse mode Na(+)/Ca(2+)-exchange and was independent of acidosis. Calpain activation occurred during reperfusion, but only after intracellular pH (pHi) normalization, and was not prevented by inhibiting its translocation during ischemia with methyl-beta-cyclodextrin. The intravenous infusion of MDL-28170 in an in vivo rat model with transient coronary occlusion during the first minutes of reperfusion resulted in a reduction of infarct size (43.9+/-3.9% vs. 60.2+/-4.7, P=0.046, n=18) and alpha-fodrin degradation. These results suggest that (1) Ca(2+)-induced calpain translocation to the membrane during ischemia is independent of its activation, (2) intracellular acidosis inhibits calpain activation during ischemia and pHi normalization allows activation upon reperfusion, and (3) calpain inhibition at the time of reperfusion appears as a potentially useful strategy to limit infarct size.
Collapse
Affiliation(s)
- Víctor Hernando
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Inserte J, Barrabes JA, Hernando V, Garcia-Dorado D. Orphan targets for reperfusion injury. Cardiovasc Res 2009; 83:169-78. [DOI: 10.1093/cvr/cvp109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|