1
|
Sánchez-Barinas CD, Vergara-Vanegas V, Gamboa-Hernández CM, Ocampo M, Cuello-Oliveros A, Patarroyo MA, Patarroyo ME. Peptide-pulsed dendritic cells' immunomodulating effect regarding Mycobacterium tuberculosis growth in macrophages. Immunobiology 2023; 228:152346. [PMID: 36805110 DOI: 10.1016/j.imbio.2023.152346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Mycobacterium tuberculosis is one of the most successful pathogens affecting humans, being the main cause of tuberculosis. It accounts for most infectious agent-related deaths worldwide; it has been estimated that a third of the world's population are bacillus carriers. This pathogen's evolutionary adaptation is mainly due to its ability to block a host's immune system by preventing it using an effective immune response in cases of active tuberculosis. Peptide-based synthetic vaccines represent an alternative for counteracting tuberculosis; however, although peptide antigens can be identified, they are not recognised by a host's immune system. An approach using dendritic cells as immunomodulating agents for increasing synthetic peptides' antigenic capacity has thus been advanced. Dendritic cells obtained from IL to 4- and GM-CSF-treated peripheral blood mononuclear cells were pulsed with synthetic Mtb protein peptides which have been reported as participating in mycobacteria-host interactions; their amino acid sequences were modified to improve MHC-II coupling and thus increase their recognition by a host's immune system. pMHC-II/TCR interaction triggered a lymphocyte response which controlled Mtb intracellular growth in infected macrophages. This work has been aimed at contributing to understanding dendritic cells' role in Mycobacterium tuberculosis protein peptide antigen presentation, thereby increasing individuals' immune response as a means of controlling the disease.
Collapse
Affiliation(s)
- Christian D Sánchez-Barinas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, postcode: 111321, Bogotá, Colombia; Universidad Nacional de Colombia, Carrera 45 No. 26-85, postcode: 111321, Bogotá, Colombia
| | | | | | - Marisol Ocampo
- Universidad Distrital Francisco José de Caldas, Carrera 3 # 26A - 40, postcode: 110311, Bogotá, Colombia.
| | - Angela Cuello-Oliveros
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, postcode: 111321, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, postcode: 111321, Bogotá, Colombia; Universidad Nacional de Colombia, Carrera 45 No. 26-85, postcode: 111321, Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, postcode: 111321, Bogotá, Colombia; Universidad Nacional de Colombia, Carrera 45 No. 26-85, postcode: 111321, Bogotá, Colombia
| |
Collapse
|
2
|
Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci Rep 2019; 9:2927. [PMID: 30814666 PMCID: PMC6393673 DOI: 10.1038/s41598-019-39654-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple regulatory mechanisms including post-translational modifications (PTMs) confer complexity to the simpler genomes and proteomes of Mycobacterium tuberculosis (Mtb). PTMs such as glycosylation play a significant role in Mtb adaptive processes. The glycoproteomic patterns of clinical isolates of the Mycobacterium tuberculosis complex (MTBC) representing the lineages 3, 4, 5 and 7 were characterized by mass spectrometry. A total of 2944 glycosylation events were discovered in 1325 proteins. This data set represents the highest number of glycosylated proteins identified in Mtb to date. O-glycosylation constituted 83% of the events identified, while 17% of the sites were N-glycosylated. This is the first report on N-linked protein glycosylation in Mtb and in Gram-positive bacteria. Collectively, the bulk of Mtb glycoproteins are involved in cell envelope biosynthesis, fatty acid and lipid metabolism, two-component systems, and pathogen-host interaction that are either surface exposed or located in the cell wall. Quantitative glycoproteomic analysis revealed that 101 sites on 67 proteins involved in Mtb fitness and survival were differentially glycosylated between the four lineages, among which 64% were cell envelope and membrane proteins. The differential glycosylation pattern may contribute to phenotypic variabilities across Mtb lineages. The study identified several clinically important membrane-associated glycolipoproteins that are relevant for diagnostics as well as for drug and vaccine discovery.
Collapse
|
3
|
Ocampo M, Rodríguez DC, Rodríguez J, Bermúdez M, Muñoz CM, Patarroyo MA, Patarroyo ME. Rv1268c protein peptide inhibiting Mycobacterium tuberculosis H37Rv entry to target cells. Bioorg Med Chem 2013; 21:6650-6. [PMID: 23993672 DOI: 10.1016/j.bmc.2013.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Tuberculosis (TB) remains one of the most worrying infectious diseases affecting public health around the world; 8.7 million new TB cases were reported in 2011. The search for an Mycobacterium tuberculosis H37Rv protein sequence which is functionally important in host-pathogen interaction has been proposed for developing a new vaccine which will allow efficient and safe control of the spread of this disease. The present study thus reports the results obtained for the Rv1268c protein described in the M. tuberculosis H37Rv genome as a hypothetical unknown, probably secreted, protein based on a highly robust, specific, sensitive and functional approach to the search for potential epitopes to be included in an anti-tuberculosis vaccine. Rv1268c presence was determined by immunoblotting after obtaining polyclonal sera against mycobacterial total sonicate or subcellular fractions. Such sera were used in electron immunomicroscopy (EIM) for confirming protein localisation on the M. tuberculosis envelop by recognising colloidal gold-labelled immunoglobulin. Screening assays revealed the presence of two sequences having high binding activity: one binding A549 alveolar epithelial cells ((141)TGMAALEQYLGSGHAVIVSI(160)) and other binding U937 monocyte-derived macrophages ((21)AVALGLASPADAAAGTMYGD(40)). Such sequences' ability to inhibit mycobacterial entry during in vitro assays was analysed. The structure of synthetic peptides binding to target cells was also determined, bearing in mind the structure-function relationship. These results, together with those obtained for other proteins, have been involved in selecting peptides which might be included in a subunit-based anti-tuberculosis vaccine.
Collapse
Affiliation(s)
- Marisol Ocampo
- Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia; Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia.
| | | | | | | | | | | | | |
Collapse
|
4
|
Ocampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D studies ofMycobacterium tuberculosisprotein peptides for an effective anti-tuberculosis vaccine. Crit Rev Microbiol 2013; 40:117-45. [DOI: 10.3109/1040841x.2013.763221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Rodríguez DM, Ocampo M, Curtidor H, Vanegas M, Patarroyo ME, Patarroyo MA. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides 2012; 38:208-16. [PMID: 23000473 DOI: 10.1016/j.peptides.2012.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine.
Collapse
|
6
|
Ocampo M, Aristizabal-Ramirez D, Rodriguez DM, Munoz M, Curtidor H, Vanegas M, Patarroyo MA, Patarroyo ME. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Eng Des Sel 2012; 25:235-42. [DOI: 10.1093/protein/gzs011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Cáceres SM, Ocampo M, Arévalo-Pinzón G, Jimenez RA, Patarroyo ME, Patarroyo MA. The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences implicated in mycobacterial invasion of two human cell lines. Peptides 2011; 32:1-10. [PMID: 20883740 DOI: 10.1016/j.peptides.2010.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 01/14/2023]
Abstract
The identification and characterization of hypothetical membrane proteins from Mycobacterium tuberculosis have led to a better understanding of the mechanisms used by this pathogen to invade and survive inside host cells. This study assessed the presence, transcription, localization and possible biological activity of the conserved hypothetical protein Rv0180c from M. tuberculosis. Bioinformatics analyses indicated that Rv0180c contains a signal peptide, six possible transmembrane helices and a Plasmodium Export Element (PEXEL)-like motif. PCR analyses showed the presence of the Rv0180c gene in strains from the M. tuberculosis complex; but transcription was not detected in Mycobacterium microti. Sera against synthetic peptides of Rv0180c recognized two protein bands in M. tuberculosis H37Rv sonicate: a ∼48-kDa band close to the predicted molecular mass of Rv0180c (47.6 kDa), and a 63-kDa band probably caused by protein modifications. Moreover, the same sera located the protein on the surface of M. tuberculosis H37Rv bacilli by immunoelectron microscopy. Twenty-three synthetic peptides spanning the entire length of Rv0180c were tested for their ability to bind to U937 and A549 cells, finding nine high-activity binding peptides (HABPs) specific for both cell types, two HABPs specific for A549 cells (namely 31032 and 31044) and two HABPs specific for U937 cells (namely 31025 and 31041). HABPs inhibited invasion of M. tuberculosis H37Rv into A549 or U937 cells by significant percentages and facilitated internalization of latex beads in A549 cells. The Rv0180c HABPs herein reported could be preliminary candidates to be assessed as components of a multiepitope, chemically synthesized, subunit-based vaccine against tuberculosis.
Collapse
|