1
|
Ezz MA, Takahashi M, Rivera RM, Balboula AZ. Cathepsin L regulates oocyte meiosis and preimplantation embryo development. Cell Prolif 2024; 57:e13526. [PMID: 37417221 PMCID: PMC10771118 DOI: 10.1111/cpr.13526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Early embryonic loss, caused by reduced embryo developmental competence, is the major cause of subfertility in humans and animals. This embryo developmental competence is determined during oocyte maturation and the first embryo divisions. Therefore, it is essential to identify the underlying molecules regulating these critical developmental stages. Cathepsin L (CTSL), a lysosomal cysteine protease, is involved in regulating cell cycle progression, proliferation and invasion of different cell types. However, CTSL role in mammalian embryo development is unknown. Using bovine in vitro maturation and culture systems, we show that CTSL is a key regulator for embryo developmental competence. We employed a specific CTSL detection assay in live cells to show that CTSL activity correlates with meiotic progression and early embryo development. Inhibiting CTSL activity during oocyte maturation or early embryo development significantly impaired oocyte and embryo developmental competence as evidenced by lower cleavage, blastocyst and hatched blastocyst rates. Moreover, enhancing CTSL activity, using recombinant CTSL (rCTSL), during oocyte maturation or early embryo development significantly improved oocyte and embryo developmental competence. Importantly, rCTSL supplementation during oocyte maturation and early embryo development significantly improved the developmental competence of heat-shocked oocytes/embryos which are notoriously known for reduced quality. Altogether, these results provide novel evidence that CTSL plays a pivotal role in regulating oocyte meiosis and early embryonic development.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary MedicineMansoura UniversityMansouraEgypt
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | | |
Collapse
|
2
|
Liu H, Peng J, Huang L, Ruan D, Li Y, Yuan F, Tu Z, Huang K, Zhu X. The role of lysosomal peptidases in glioma immune escape: underlying mechanisms and therapeutic strategies. Front Immunol 2023; 14:1154146. [PMID: 37398678 PMCID: PMC10311646 DOI: 10.3389/fimmu.2023.1154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Linzhen Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Dong Ruan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuguang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Fan Yuan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
3
|
Yuan B, Li J, Miyashita SI, Kikuchi H, Xuan M, Matsuzaki H, Iwata N, Kamiuchi S, Sunaga K, Sakamoto T, Hibino Y, Okazaki M. Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196577. [PMID: 36235115 PMCID: PMC9571627 DOI: 10.3390/molecules27196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
- Correspondence: ; Tel./Fax: +81-49-271-8026
| | - Jingmei Li
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shin-Ich Miyashita
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Katsuyoshi Sunaga
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
4
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
5
|
Yuan B, Xu K, Shimada R, Li J, Hayashi H, Okazaki M, Takagi N. Cytotoxic Effects of Arsenite in Combination With Gamabufotalin Against Human Glioblastoma Cell Lines. Front Oncol 2021; 11:628914. [PMID: 33796463 PMCID: PMC8009626 DOI: 10.3389/fonc.2021.628914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is a fatal primary malignant brain tumor, and the 5-year survival rate of treated glioblastoma patients still remains <5%. Considering the sustained development of metastasis, tumor recurrence, and drug resistance, there is an urgent need for the novel therapeutic approaches to combat glioblastoma. Trivalent arsenic derivative (arsenite, AsIII) with remarkable clinical efficacy in leukemia has been shown to exert cytocidal effect against glioblastoma cells. Gamabufotalin, an active bufadienolide compound, also shows selective cytocidal effect against glioblastoma cells, and has been suggested to serve as a promising adjuvant therapeutic agent to potentiate therapeutic effect of conventional anticancer drugs. In order to gain novel insight into therapeutic approaches against glioblastoma, the cytotoxicity of AsIII and gamabufotalin was explored in the human glioblastoma cell lines U-87 and U-251. In comparison with U-251 cells, U-87 cells were highly susceptible to the two drugs, alone or in combination. More importantly, clinically achieved concentrations of AsIII combined with gamabufotalin exhibited synergistic cytotoxicity against U-87 cells, whereas showed much less cytotoxicity to human normal peripheral blood mononuclear cells. G2/M cell cycle arrest was induced by each single drug, and further augmented by their combination in U-87 cells. Downregulation of the expression levels of cdc25C, Cyclin B1, cdc2, and survivin was observed in U-87 cells treated with the combined regimen and occurred in parallel with G2/M arrest. Concomitantly, lactate dehydrogenase leakage was also observed. Intriguingly, SB203580, a specific inhibitor of p38 MAPK, intensified the cytotoxicity of the combined regimen in U-87 cells, whereas wortmannin, a potent autophagy inhibitor, significantly rescued the cells. Collectively, G2/M arrest, necrosis and autophagy appeared to cooperatively contribute to the synergistic cytotoxicity of AsIII and gamabufotalin. Given that p38 MAPK serves an essential role in promoting glioblastoma cell survival, developing a possible strategy composed of AsIII, gamabufotalin, and a p38 MAPK inhibitor may provide novel insight into approaches designed to combat glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan.,Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Kang Xu
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Ryota Shimada
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - JingZhe Li
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| |
Collapse
|
6
|
Ommati MM, Shi X, Li H, Zamiri MJ, Farshad O, Jamshidzadeh A, Heidari R, Ghaffari H, Zaker L, Sabouri S, Chen Y. The mechanisms of arsenic-induced ovotoxicity, ultrastructural alterations, and autophagic related paths: An enduring developmental study in folliculogenesis of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:110973. [PMID: 32781346 DOI: 10.1016/j.ecoenv.2020.110973] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Arsenic (As) exerts a wide range of adverse effects on biological systems, including the reproductive organs in males and females. However, the mechanisms of As-induced reproductive toxicity are mostly obscure. Recently, we showed that autophagy is an essential route for As2O3-induced reprotoxicity through the hypothalamic-pituitary-gonadal-sperm (HPG-S) axis in pubertal and matured F1-male mice. However, the role of autophagy in As2O3- induced ovarian toxicity is mostly unknown. Hence, this study aimed to elucidate the role of oxidative stress, mitochondrial impairment, and autophagic processes in the ovary of As-exposed female mice. For this purpose, mature female mice were challenged with 0, low (0.2), medium (2), and high (20 ppm) As2O3 from 35-days before mating till weaning their pups, and the F1- females from weaning until maturity. Then, all the mice were sacrificed, and oxidative stress parameters, mitochondrial indices, electron microscopic evaluation of the ovaries, expression of autophagic-related genes and proteins, and autophagosome formation were assessed. It was shown that medium and high As2O3 doses were a potent inducer of oxidative stress, mitochondrial dysfunction, and autophagy in the ovary of F1-generation. A dose-dependent increment in the gene expression of PDK1, PI3K, TSC2, AMPK, ULK1, ATG13, Beclin1, ATG12, ATG5, LC3, P62, ATG3, ATG7, and p62, as well as protein expression of Beclin1, and LC3- I, II, was evident in the ovaries of the As-treated animals. Moreover, a dose-dependent decrease in the expression of mTOR and Bcl-2 genes, and mTOR protein was detected with increasing doses of As, suggesting that As treatment-induced autophagy. Along with a dose-dependent increase in the number of MDC-labeled autophagic vacuoles, transmission electron microscopy also confirmed more autophagosomes and injured mitochondria in medium and high As2O3 doses groups. As2O3 also negatively affected the mean body weight, litter size, organ coefficient, and stereological indices in female mice. Finally, in physiological conditions, arsenic trioxide (As2O3) leads to an increased level of autophagy in the oocyte when many oocytes were being lost. These findings indicated that an imbalance in the oxidant-antioxidant system, mitochondrial impairment, and the autophagic process, through inhibition of mTOR, dependent and independent pathways, and Bcl-2, as well as activation of AMPK/PI3K/Beclin1/LC3 routes, could play a pivotal role in As-induced reproductive toxicity through ovarian dysfunction in females.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Xiong Shi
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Huifeng Li
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | | | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran.
| | - Hasti Ghaffari
- Department of Veterinary Sciences, Islamic Azad University Urmia Branch, Urmia, Iran
| | - Ladan Zaker
- Department of Hematology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Sabouri
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yuanyu Chen
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| |
Collapse
|
7
|
Yuan B, Shimada R, Xu K, Han L, Si N, Zhao H, Bian B, Hayashi H, Okazaki M, Takagi N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact 2019; 314:108849. [DOI: 10.1016/j.cbi.2019.108849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
8
|
Ommati MM, Heidari R, Manthari RK, Tikka Chiranjeevi S, Niu R, Sun Z, Sabouri S, Zamiri MJ, Zaker L, Yuan J, Wang J, Zhang J, Wang J. Paternal exposure to arsenic resulted in oxidative stress, autophagy, and mitochondrial impairments in the HPG axis of pubertal male offspring. CHEMOSPHERE 2019; 236:124325. [PMID: 31326754 DOI: 10.1016/j.chemosphere.2019.07.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Despite the knowledge of AS-induced reprotoxicity, the literature concerning arsenic trioxide (As2O3)-induced oxidative stress and consequent intracellular events, like autophagy process, in the hypothalamic-pituitary- gonadal (HPG) axis of F1- pubertal male mice is sparse to date. Hence, we made an attempt to study the reproductive toxicities and the underlying mechanisms induced by As2O3 in the HPG axis of pubertal F1- male mice in correlation with oxidative stress-induced autophagy. Parental mice were challenged with As2O3 (0, 0.2, 2, and 20 ppm) from five weeks before mating, and continued till puberty age for the male pups. It was recorded that higher As2O3 doses (2 and 20 ppm) were a potent inducer of oxidative stress and autophagy in the HPG axis. Concomitant with a decrease on mean body weight, total antioxidant capacity, and stereology indices, an increase in the number of MDC-labeled autophagic vacuoles, and MDA/GSH ratio in HPG axis of pubertal F1- male mice which were exposed to higher As2O3 doses was observed. Meanwhile, concomitant with a dose-dependent increment in the gene expression of ATG3, ATG5, Beclin, as well as protein expression of P62, ATG12, and Beclin in HPG axis tissues; a dose-dependent decrease in PI3K and mTOR gene expression was recorded in the HPG tissues of pubertal F1-males. Altogether, our observations suggest that higher doses of As2O3 have detrimental effects on the functionality of HPG axis in pubertal male mice offspring by increasing MDA/GSH ratio and autophagic cell death-related genes and proteins, as well as by reducing total antioxidant capacity.
Collapse
Affiliation(s)
- M M Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - R Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran
| | - R K Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - S Tikka Chiranjeevi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - R Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Z Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - S Sabouri
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - M J Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - L Zaker
- Department of Hematology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - J Yuan
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - J Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - J Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - J Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
9
|
Bae J, Jang Y, Kim H, Mahato K, Schaecher C, Kim IM, Kim E, Ro SH. Arsenite exposure suppresses adipogenesis, mitochondrial biogenesis and thermogenesis via autophagy inhibition in brown adipose tissue. Sci Rep 2019; 9:14464. [PMID: 31594991 PMCID: PMC6783448 DOI: 10.1038/s41598-019-50965-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes. Brown adipocytes dissipating energy as heat have emerging roles for obesity treatment and prevention. Therefore, understanding the pathophysiological role of brown adipocytes can provide effective strategies delineating the link between arsenite exposure and metabolic disorders. Our study revealed that arsenite significantly reduced differentiation of murine brown adipocytes and mitochondrial biogenesis and respiration, leading to attenuated thermogenesis via decreasing UCP1 expression. Oral administration of arsenite in mice resulted in heavy accumulation in brown adipose tissue and suppression of lipogenesis, mitochondrial biogenesis and thermogenesis. Mechanistically, arsenite exposure significantly inhibited autophagy necessary for homeostasis of brown adipose tissue through suppression of Sestrin2 and ULK1. These results clearly confirm the emerging mechanisms underlying the implications of arsenite exposure in metabolic disorders.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Yura Jang
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Kalika Mahato
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Cameron Schaecher
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Isaac M Kim
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68588, USA
| | - Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
10
|
Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J. Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood-brain barrier's tight junction proteins. Arch Toxicol 2018; 92:3255-3275. [PMID: 30225639 DOI: 10.1007/s00204-018-2304-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
For the past decade, there has been an increased concern about the health risks from arsenic (As) exposure, because of its neurotoxic effects on the developing brain. The exact mechanism underlying As-induced neurotoxicity during sensitive periods of brain development remains unclear, especially the role of blood-brain barrier's (BBB) tight junction (TJ) proteins during As-induced neurotoxicity. Here, we highlight the involvement of TJ proteins in As-induced autophagy in cerebral cortex and hippocampus during developmental periods [postnatal day (PND) 21, 28, 35 and 42]. Here, the administration of arsenic trioxide (As2O3) at doses of 0.15 mg or 1.5 mg or 15 mg As2O3/L in drinking water from gestational to lactational and continued to the pups till PND42 resulted in a significant decrease in the mRNA expression levels of TJ proteins (Occludin, Claudin, ZO-1 and ZO-2) and Occludin protein expression level. In addition, As exposure significantly decreased PI3K, Akt, mTOR, and p62 with a concomitant increase in Beclin1, LC3I, LC3II, Atg5 and Atg12. Moreover, As exposure also significantly downregulated the protein expression levels of mTOR with a concomitant upregulation of Beclin 1, LC3 and Atg12 in all the developmental age points. However, no significant alterations were observed in low and medium dose-exposed groups of PND42. Histopathological analysis in As-exposed mice revealed decreased number of pyramidal neurons in hippocampus; and neurons with degenerating axons, shrinkage of cells, remarkable vacuolar degeneration in cytoplasm, karyolysis and pyknosis in cerebral cortex. Ultrastructural analysis by transmission electron microscopy revealed the occurrence of autophagosomes and vacuolated axons in the cerebral cortex and hippocampus of the mice exposed to high dose As at PND21 and 42. The severities of changes were found to more persist in the cerebral cortex than in the hippocampus of As-exposed mice. Finally, we conclude that the leaky BBB in cerebral cortex and hippocampus may facilitate the transfer of As and induces autophagy by inhibiting PI3K/Akt/mTOR signaling pathway in an age-dependent manner, i.e., among the four different developmental age points, PND21 animals were found to be more vulnerable to the As-induced neurotoxicity than the other three age points.
Collapse
Affiliation(s)
- Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.,Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
11
|
Sun Y, Wang C, Wang L, Dai Z, Yang K. Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells. Cell Mol Biol Lett 2018; 23:13. [PMID: 29610575 PMCID: PMC5870496 DOI: 10.1186/s11658-018-0074-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Arsenic trioxide (As2O3) has a dramatic therapeutic effect on acute promyelocytic leukemia (APL) patients. It can also cause apoptosis in various tumor cells. This study investigated whether As2O3 has an antitumor effect on glioma and explored the underlying mechanism. Results MTT and trypan blue assays showed that As2O3 remarkably inhibited growth of C6 and 9 L glioma cells. Cell viability decreased in glioma cells to a greater extent than in normal glia cells. The annexin V-FITC/PI and Hoechest/PI staining assays revealed a significant increase in apoptosis that correlated with the duration of As2O3 treatment and occurred in glioma cells to a greater extent than in normal glial cells. As2O3 treatment induced reactive oxygen species (ROS) production in C6 and 9 L cells in a time-dependent manner. Cells pretreated with the antioxidant N-acetylcysteine (NAC) showed significantly lower As2O3-induced ROS generation. As2O3 significantly inhibited the expression of the anti-apoptotic gene Bcl-2, and upregulated the proapoptotic gene Bax in both C6 and 9 L glioma cells in a time-dependent manner. Conclusions As2O3 can significantly inhibit the growth of glioma cells and it can induce cell apoptosis in a time- and concentration-dependent manner. ROS were found to be responsible for apoptosis in glioma cells induced by As2O3. These results suggest As2O3 is a promising agent for the treatment of glioma.
Collapse
Affiliation(s)
- Yuanyuan Sun
- 1Nursing Support Center, First Affiliated Hospital, Harbin Medical University, Harbin, 150000 China
| | - Chen Wang
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| | - Ligang Wang
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| | - Zhibo Dai
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| | - Kongbin Yang
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| |
Collapse
|
12
|
Nagakannan P, Eftekharpour E. Differential redox sensitivity of cathepsin B and L holds the key to autophagy-apoptosis interplay after Thioredoxin reductase inhibition in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med 2017; 108:819-831. [PMID: 28478025 DOI: 10.1016/j.freeradbiomed.2017.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) are essential for induction of protective autophagy, however unexpected rise in cellular ROS levels overpowers the cellular defense and therefore promotes the programmed apoptotic cell death. We recently reported that inhibition of thioredoxin reductase (TrxR) in starving SH-SY5Y cells interrupted autophagy flux by induction of lysosomal deficiency and promoted apoptosis. (Free Radic Biol Med. 2016: 101:53-70). Here, we aimed to elucidate the underlying mechanisms during autophagy-apoptosis interplay, and focused on regulation of cathepsin B (CTSB) and L (CTSL), the pro-apoptotic and pro-autophagy cathepsins respectively. Inhibition of TrxR by Auranofin, caused lysosomal membrane permeabilization (LMP) that was associated with a significant upregulation of CTSB activity, despite no significant changes in CTSB protein level. Conversely, a significant rise in CTSL protein levels was observed without any apparent change in CTSL activity. Using thiol-trapping techniques to examine the differential sensitivity of cathepsins to oxidative stress, we discovered that Auranofin-mediated oxidative stress interferes with CTSL processing and thereby interrupts its pro-autophagy function. No evidence of CTSB susceptibility to oxidative stress was observed. Our data suggest that cellular fate in these conditions is mediated by two concurrent systems: while oxidative stress prevents the protective autophagy by inhibition of CTSL processing, concomitantly, apoptosis is induced by increasing lysosomal membrane permeability and leakage of CTSB into cytoplasm. Inhibition of CTSB in these conditions inhibited apoptosis and increased cell viability. To our knowledge this is the first report uncovering the impact of redox environment on autophagy-apoptosis interplay in neuronal cells.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program, Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program, Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Primon M, Huszthy PC, Motaln H, Talasila KM, Miletic H, Atai NA, Bjerkvig R, Lah Turnšek T. Cathepsin L silencing increases As 2O 3 toxicity in malignantly transformed pilocytic astrocytoma MPA58 cells by activating caspases 3/7. Exp Cell Res 2017; 356:64-73. [PMID: 28412241 DOI: 10.1016/j.yexcr.2017.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Low-grade, pilocytic astrocytomas are treated by resection, but additional therapy is necessary for those tumors with anaplastic features. Arsenic trioxide (As2O3) is emerging as an effective chemotherapeutic agent for treatment of malignant glioblastoma multiforme, where Cathepsin L silencing enables lower, less harmful As2O3 concentrations to achieve the desired cytotoxic effect. Here, we evaluated the effects of As2O3 combined with stable Cathepsin L shRNA silencing on cell viability/metabolic activity, and apoptosis in primary cultures of recurrent malignantly transformed pilocytic astrocytoma (MPA). These cells expressed high Cathepsin L levels, and when grown as monolayers and spheroids, they were more resistant to As2O3 than the U87MG glioblastoma cell line. Caspases 3/7 activity in MPA58 spheroids was not significantly affected by As2O3, possibly due to higher chemoresistance of primary biopsy tissue of less malignant astrocytoma versus the malignant U87MG cell line. However, As2O3 treatment was cytotoxic to MPA spheroids after silencing of Cathepsin L expression. While Cathepsin L silencing only slightly decreased the live/dead cell ratio in As2O3-treated MPA-si spheroids under our experimental conditions, there was an increase in As2O3-mediated apoptosis in MPA-si spheroids, as indicated by elevated caspases 3/7 activity. Therefore, Cathepsin L silencing by gene manipulation can be applied when a more aggressive approach is needed in treatment of pilocytic astrocytomas with anaplastic features.
Collapse
Affiliation(s)
- Monika Primon
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Bia d.o.o., Ljubljana, Slovenia.
| | - Peter C Huszthy
- Department of Biomedicine, University of Bergen, Norway; Department of Immunology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Nadia A Atai
- Department of Cell Biology and Histology, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, Slovenia
| |
Collapse
|
14
|
Cheng YC, Ding YM, Hueng DY, Chen JY, Chen Y. Caffeine suppresses the progression of human glioblastoma via cathepsin B and MAPK signaling pathway. J Nutr Biochem 2016; 33:63-72. [PMID: 27260469 DOI: 10.1016/j.jnutbio.2016.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Glioblastoma has aggressive proliferative and invasive properties. We investigated the effect of caffeine on the invasion and the anti-cancer effect in human glioblastomas. Caffeine reduced the invasion in U-87MG, GBM8401 and LN229 cells. Caffeine decreased mRNA, protein expression, and activity of cathepsin B. Besides, mRNA and protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) was upregulated by caffeine treatment, whereas matrix metalloproteinase-2 (MMP-2) was downregulated. The expression of Ki67, p-p38, phospforylated extracellular regulated protein kinases (p-ERK), and membranous integrin β1 and β3 was decreased by caffeine. The Rho-associated protein kinase (ROCK) inhibitor, Y27632, blocked the caffeine-mediated reduction of cathepsin B, phosphorylated focal adhesion kinase (p-FAK), and p-ERK, and invasion. Moreover, caffeine decreased the tumor size, cathepsin B and Ki67 expression in animal model. Caffeine reduced the invasion of glioma cells through ROCK-cathepsin B/FAK/ERK signaling pathway and tumor growth in orthotopic xenograft animal model, supporting the anti-cancer potential in glioma therapy.
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - You-Ming Ding
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
15
|
Cathepsin L suppression increases the radiosensitivity of human glioma U251 cells via G2/M cell cycle arrest and DNA damage. Acta Pharmacol Sin 2015; 36:1113-25. [PMID: 26095040 DOI: 10.1038/aps.2015.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
AIM Cathepsin L is a lysosomal cysteine protease that plays important roles in cancer tumorigenesis, proliferation and chemotherapy resistance. The aim of this study was to determine how cathepsin L regulated the radiosensitivity of human glioma cells in vitro. METHODS Human glioma U251 cells (harboring the mutant type p53 gene) and U87 cells (harboring the wide type p53 gene) were irradiated with X-rays. The expression of cathepsin L was analyzed using Western blot and immunofluorescence assays. Cell survival and DNA damage were evaluated using clonogenic and comet assays, respectively. Flow cytometry was used to detect the cell cycle distribution. Apoptotic cells were observed using Hoechst 33258 staining and fluorescence microscopy. RESULTS Irradiation significantly increased the cytoplasmic and nuclear levels of cathepsin L in U251 cells but not in U87 cells. Treatment with the specific cathepsin L inhibitor Z-FY-CHO (10 μmol/L) or transfection with cathepsin L shRNA significantly increased the radiosensitivity of U251 cells. Both suppression and knockdown of cathepsin L in U251 cells increased irradiation-induced DNA damage and G2/M phase cell cycle arrest. Both suppression and knockdown of cathepsin L in U251 cells also increased irradiation-induced apoptosis, as shown by the increased levels of Bax and decreased levels of Bcl-2. CONCLUSION Cathepsin L is involved in modulation of radiosensitivity in human glioma U251 cells (harboring the mutant type p53 gene) in vitro.
Collapse
|
16
|
Zhang Q, Han M, Wang W, Song Y, Chen G, Wang Z, Liang Z. Downregulation of cathepsin L suppresses cancer invasion and migration by inhibiting transforming growth factor‑β‑mediated epithelial‑mesenchymal transition. Oncol Rep 2015; 33:1851-9. [PMID: 25632968 DOI: 10.3892/or.2015.3754] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
Cathepsin L, a lysosomal acid cysteine protease, was found to be overexpressed in several types of human carcinomas. However, its functional roles in tumor progression and the underlying mechanisms remain largely unclear. In the present study, we investigated a novel functional aspect of cathepsin L in regulating transforming growth factor‑β (TGF‑β)‑induced epithelial‑mesenchymal transition (EMT) in A549 and MCF‑7 cells and examined its possible mechanisms. We found that TGF‑β‑induced cell morphologic changes of EMT were associated with the increased protein level of cathepsin L in A549 and MCF‑7 cells, suggesting that cathepsin L may be involved in the regulation of EMT. Furthermore, we showed that silencing of cathepsin L blocked TGF‑β‑induced cell migration, invasion and actin remodeling and inhibited TGF‑β‑mediated EMT. We also demonstrated that the mechanism of how cathepsin L knockdown regulates EMT may be explained by the suppression of EMT‑inducing molecules, such as Snail, which is associated with the phosphatidylinositol 3‑kinase (PI3K)‑AKT and Wnt signaling pathways. Moreover, we proved that cathepsin L knockdown in A549 cells significantly inhibited xenograft tumor growth and EMT in vivo. The results showed a new mechanism to determine cathepsin L involvement in the regulation of cancer invasion and migration. These results showed that cathepsin L knockdown is important in regulating EMT and suggest that cathepsin L may be utilized as a new target for enhancing the efficacy of chemotherapeutics against epithelial cancer.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Meiling Han
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Wenjuan Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yunzhen Song
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Zhongqin Liang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
17
|
Qi Y, Li H, Zhang M, Zhang T, Frank J, Chen G. Autophagy in arsenic carcinogenesis. ACTA ACUST UNITED AC 2014; 66:163-8. [DOI: 10.1016/j.etp.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
|
18
|
Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun 2014; 2:31. [PMID: 24685274 PMCID: PMC3977902 DOI: 10.1186/2051-5960-2-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023] Open
Abstract
Background Notch and Hedgehog signaling have been implicated in the pathogenesis and stem-like characteristics of glioblastomas, and inhibitors of the pathways have been suggested as new therapies for these aggressive tumors. It has also been reported that targeting both pathways simultaneously can be advantageous in treating glioblastoma neurospheres, but this is difficult to achieve in vivo using multiple agents. Since arsenic trioxide has been shown to inhibit both Notch and Hedgehog in some solid tumors, we examined its effects on these pathways and on stem cell phenotype in glioblastoma. Results We found that arsenic trioxide suppresses proliferation and promotes apoptosis in three stem-like glioblastoma neurospheres lines, while inhibiting Notch and Hedgehog target genes. Importantly, arsenic trioxide markedly reduced clonogenic capacity of the tumor neurospheres, and the stem-like CD133-positive fraction was also diminished along with expression of the stem cell markers SOX2 and CD133. Conclusions Our results suggest that arsenic trioxide may be effective in targeting stem-like glioblastoma cells in patients by inhibiting Notch and Hedgehog activity.
Collapse
|
19
|
Primon M, Huszthy PC, Motaln H, Talasila KM, Torkar A, Bjerkvig R, Lah Turnšek T. Cathepsin L silencing enhances arsenic trioxide mediated in vitro cytotoxicity and apoptosis in glioblastoma U87MG spheroids. Exp Cell Res 2013; 319:2637-48. [PMID: 23968587 DOI: 10.1016/j.yexcr.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022]
Abstract
Despite improved treatment options, glioblastoma multiforme (GBM) remains the most aggressive brain tumour with the shortest post-diagnostic survival. Arsenite (As2O3) is already being used in the treatment of acute promyelocytic leukaemia (APL), yet its effects on GBM have not been evaluated in detail. In U87MG cell monolayers, we have previously shown that arsenite cytotoxicity significantly increases upon transient inhibition of lysosomal protease Cathepsin L (CatL). As multicellular spheroids more closely represent in vivo tumours, we aimed to evaluate the impact of permanent CatL silencing on arsenite treatment in U87MG spheroids. CatL was stably silenced using shRNA expression plasmid packed lentiviruses. By using metabolic- and cell viability assays, we demonstrated that long-term CatL silencing significantly increased arsenite cytotoxicity in U87MG spheroids. Silenced CatL also increased arsenite-mediated apoptosis in spheroids via elevated p53 expression, Bax/Bcl2 ratio and caspase 3/7 activity, though with lower efficacy than in monolayers. Arsenite cytotoxicity was enhanced by lower CatL activity, since similar cytotoxicity increase was also observed using the novel CatL inhibitor AT094. The results have significant translational impact, since stable CatL silencing would enable the application of lower systemic doses of arsenite to achieve the desired cytotoxic effects on GBMs in vivo.
Collapse
Affiliation(s)
- Monika Primon
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Bia d.o.o., Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
20
|
Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, Moura-Neto V, Borges HL. Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis 2013; 4:e767. [PMID: 23949216 PMCID: PMC3763445 DOI: 10.1038/cddis.2013.283] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Glioblastomas (GBMs) are devastating tumors of the central nervous system, with a poor prognosis of 1-year survival. This results from a high resistance of GBM tumor cells to current therapeutic options, including etoposide (VP-16). Understanding resistance mechanisms may thus open new therapeutic avenues. VP-16 is a topoisomerase inhibitor that causes replication fork stalling and, ultimately, the formation of DNA double-strand breaks and apoptotic cell death. Autophagy has been identified as a VP-16 treatment resistance mechanism in tumor cells. Retinoblastoma protein (RB) is a classical tumor suppressor owing to its role in G1/S cell cycle checkpoint, but recent data have shown RB participation in many other cellular functions, including, counterintuitively, negative regulation of apoptosis. As GBMs usually display an amplification of the EGFR signaling involving the RB protein pathway, we questioned whether RB might be involved in mechanisms of resistance of GBM cells to VP-16. We observed that RB silencing increased VP-16-induced DNA double-strand breaks and p53 activation. Moreover, RB knockdown increased VP-16-induced apoptosis in GBM cell lines and cancer stem cells, the latter being now recognized essential to resistance to treatments and recurrence. We also showed that VP-16 treatment induced autophagy, and that RB silencing impaired this process by inhibiting the fusion of autophagosomes with lysosomes. Taken together, our data suggest that RB silencing causes a blockage on the VP-16-induced autophagic flux, which is followed by apoptosis in GBM cell lines and in cancer stem cells. Therefore, we show here, for the first time, that RB represents a molecular link between autophagy and apoptosis, and a resistance marker in GBM, a discovery with potential importance for anticancer treatment.
Collapse
Affiliation(s)
- D Biasoli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S A Kahn
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T A Cornélio
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Furtado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - L Campanati
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H Chneiweiss
- Glial Plasticity Laboratory, Center for Psychiatry and Neuroscience, U894 Inserm, Paris Descartes University, Paris, France
| | - V Moura-Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H L Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Cohen KJ, Gibbs IC, Fisher PG, Hayashi RJ, Macy ME, Gore L. A phase I trial of arsenic trioxide chemoradiotherapy for infiltrating astrocytomas of childhood. Neuro Oncol 2013; 15:783-7. [PMID: 23460318 DOI: 10.1093/neuonc/not021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) has demonstrated preclinical evidence of activity in the treatment of infiltrating astrocytomas. METHODS We conducted a phase I trial of ATO given concomitantly with radiation therapy in children with newly diagnosed anaplastic astrocytoma, glioblastoma, or diffuse intrinsic pontine glioma. Eligible patients received a fixed daily dose of 0.15 mg/kg of ATO once a week, with each subsequent cohort of patients receiving an additional dose per week up to a planned frequency of ATO administration 5 days per week as tolerated. Twenty-four children were enrolled and 21 children were evaluable. RESULTS ATO was well tolerated throughout the entire dose escalation, resulting in confirmation of safety when administered 5 days per week during irradiation. CONCLUSIONS The recommended dose of ATO during conventional irradiation is 0.15 mg/kg given on a daily basis with each fraction of radiation therapy administered.
Collapse
Affiliation(s)
- Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bloomberg 11379, 1800 Orleans St, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Falnoga I, Zelenik Pevec A, Šlejkovec Z, Žnidarič MT, Zajc I, Mlakar SJ, Marc J. Arsenic trioxide (ATO) influences the gene expression of metallothioneins in human glioblastoma cells. Biol Trace Elem Res 2012; 149:331-9. [PMID: 22555517 DOI: 10.1007/s12011-012-9431-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Arsenic trioxide (As(2)O(3); ATO, TRISENOX®) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6-7 μM arsenic (equivalent to 0.3, 1 and 3-3.5 μM As(2)O(3)) for 12, 24 or 48 h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman® gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is more enigmatic, with its possible involvement in arsenic-related induction of type II cell death.
Collapse
|
23
|
Torkar A, Bregant S, Devel L, Novinec M, Lenarčič B, Lah T, Dive V. A novel photoaffinity-based probe for selective detection of cathepsin L active form. Chembiochem 2012; 13:2616-21. [PMID: 23125066 DOI: 10.1002/cbic.201200389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 01/04/2023]
Abstract
Detecting the active forms of proteases by using activity-based probes in complex proteomes has become an intensively investigated field of research over the past years because many pathogenic conditions involve alterations in protease activities. The detection of lysosomal cysteine proteases, the cathepsins, has mostly relied on the use of probes that incorporate reactive electrophilic moieties to modify a cysteine in the active site covalently. Here we report the first example of an activity-based probe that targets the cathepsins and incorporates a photoactivatable benzophenone group for covalent labelling. When tested on a set of five cathepsins (B, K, L, S and V), this probe selectively labelled the active site of cathepsin L. Furthermore, when tested on crude cell extracts, the probe specifically detected cathepsin L quantities as low as a few picomoles. This study suggests that photoaffinity labelling is a promising approach for developing highly selective and useful cathepsin L probes. In particular, this probe might allow the detection of small amounts of the secreted active cathepsin L form in the cellular microenvironment in vitro and ex vivo.
Collapse
Affiliation(s)
- Ana Torkar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
24
|
Suk K. Proteomic analysis of glioma chemoresistance. Curr Neuropharmacol 2012; 10:72-9. [PMID: 22942880 PMCID: PMC3286849 DOI: 10.2174/157015912799362733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 12/16/2022] Open
Abstract
Malignant glioma is the most common and destructive form of primary brain tumor. Along with surgery and radiation, chemotherapy remains as the major treatment modality. The emergence of drug resistance, however, often leads to a therapeutic failure in the treatment of glioma, precluding long-term survival of the patients. A proteomic approach has recently been adapted for the mechanistic analysis of glioma drug resistance. The proteomic analysis of drug-resistant glioma led to the discovery of novel biomarkers that can be used for the prognosis of glioma as well as for monitoring the drug response or resistance of glioma. These proteomics-based biomarkers can also be a druggable target that one can exploit for successful glioma chemotherapy. In this review, recent reports on proteomic analysis of glioma from the perspective of chemoresistance are discussed with a focus on the proteome profiles of glioma cells that are resistant to the alkylating agent, 1, 3-bis (2-chloroethyl)-1-nitrosourea (BCNU), as a prime example. Among numerous proteins that were up- or down-regulated in drug-resistant glioma cells, lipocalin 2 (LCN2) and integrin β3 (ITGB3) were identified as key proteins that determine the survival and death of glioma cells. LCN2, ITGB3, and other proteins identified by proteomic analysis could be utilized to overcome glioma chemoresistance.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
25
|
Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis 2011; 16:671-82. [PMID: 21484410 DOI: 10.1007/s10495-011-0600-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite all the progress in cancer treatment, glioblastoma, the most malignant tumor of the central nervous system, remains a terminal disease and new therapeutic approaches are urgently needed. A combination of chemotherapy with modifications that lower the apoptotic threshold of cancer cells could be effective. Cathepsin L inhibition was suggested as one of such modifications but the mechanism of cathepsin L anti-apoptotic activity is largely unknown. In the present study we show that, in U87 glioblastoma cells, cathepsin L is present in the nucleus and regulates the transcription of effector caspases 3 and 7. In cells with low cathepsin L expression, p53 and prohibitin--transcription factors that regulate caspase 7 expression--accumulate in the nuclei. The importance of p53 in this process is highlighted by the fact that in U87 cells with inhibited p53 transcriptional activity or in p53-negative cells U251, cathepsin L inhibition did not influence caspase 7 expression and had minimal effect on the level of apoptosis. Since p53 pathways are often mutated in glioblastoma, the findings of our study need to be considered before using cathepsin L inhibition for glioblastoma therapy and suggest that such adjuvant therapy may be effective only for a subpopulation of p53 wild type glioblastoma patients.
Collapse
Affiliation(s)
- Saša Kenig
- Department of Genetic Toxicology and Cancer Biology, National Institue of Biology, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
26
|
Dizaji MZ, Malehmir M, Ghavamzadeh A, Alimoghaddam K, Ghaffari SH. Synergistic Effects of Arsenic Trioxide and Silibinin on Apoptosis and Invasion in Human Glioblastoma U87MG Cell Line. Neurochem Res 2011; 37:370-80. [DOI: 10.1007/s11064-011-0620-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/27/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
|
27
|
Castino R, Pucer A, Veneroni R, Morani F, Peracchio C, Lah TT, Isidoro C. Resveratrol reduces the invasive growth and promotes the acquisition of a long-lasting differentiated phenotype in human glioblastoma cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4264-4272. [PMID: 21395220 DOI: 10.1021/jf104917q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Malignant glioblastoma represents a challenge in the chemotherapy of brain tumors, because of its aggressive behavior characterized by chemoresistance, infiltrative diffusion, and high rate of recurrence and death. In this study, we used cultured human U87MG cells and primary human glioblastoma cultures to test the anticancer properties of resveratrol (RV), a phytoalexin abundantly present in a variety of dietary products. In U87MG cells, 100 μM RV elicited cell growth arrest by 48 h and bax-mediated cell toxicity by 96 h and greatly limited cell migration and invasion through matrigel. Both in U87MG cells and in primary glioblastoma cultures, the chronic administration of RV (100 μM for up to 96 h) decreased the expression of nestin (a brain (cancer) stem cells marker) but increased that of glial acidic fibrillary protein (a mature glial cell marker) and of βIII-tubulin (a neuronal differentiation marker). Chronic treatment with RV increased the proportion of cells positive for senescence-associated β-galactosidase activity. This is the first report showing the ability of RV to induce glial-like and neuronal-like differentiation in glioblastoma cells. The beneficial effects of chronic RV supplementation lasted up to 96 h after its withdrawal from the culture medium. The present findings support the introduction of pulsed administration of this food-derived molecule in the chemotherapy regimen of astrocytomas.
Collapse
Affiliation(s)
- Roberta Castino
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
NFκB inhibitors induce cell death in glioblastomas. Biochem Pharmacol 2010; 81:412-24. [PMID: 21040711 DOI: 10.1016/j.bcp.2010.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 12/16/2022]
Abstract
Identification of novel target pathways in glioblastoma (GBM) remains critical due to poor prognosis, inefficient therapies and recurrence associated with these tumors. In this work, we evaluated the role of nuclear-factor-kappa-B (NFκB) in the growth of GBM cells, and the potential of NFκB inhibitors as antiglioma agents. NFκB pathway was found overstimulated in GBM cell lines and in tumor specimens compared to normal astrocytes and healthy brain tissues, respectively. Treatment of a panel of established GBM cell lines (U138MG, U87, U373 and C6) with pharmacological NFκB inhibitors (BAY117082, parthenolide, MG132, curcumin and arsenic trioxide) and NFκB-p65 siRNA markedly decreased the viability of GBMs as compared to inhibitors of other signaling pathways such as MAPKs (ERK, JNK and p38), PKC, EGFR and PI3K/Akt. In addition, NFκB inhibitors presented a low toxicity to normal astrocytes, indicating selectivity to cancerous cells. In GBMs, mitochondrial dysfunction (membrane depolarization, bcl-xL downregulation and cytochrome c release) and arrest in the G2/M phase were observed at the early steps of NFκB inhibitors treatment. These events preceded sub-G1 detection, apoptotic body formation and caspase-3 activation. Also, NFκB was found overstimulated in cisplatin-resistant C6 cells, and treatment of GBMs with NFκB inhibitors overcame cisplatin resistance besides potentiating the effects of the chemotherapeutics, cisplatin and doxorubicin. These findings support NFκB as a potential target to cell death induction in GBMs, and that the NFκB inhibitors may be considered for in vivo testing on animal models and possibly on GBM therapy.
Collapse
|