1
|
Chen M, Zhou K, Dai SY, Tadepalli S, Balakrishnan PB, Xie J, Rami FEI, Dai T, Cui L, Idoyaga J, Rao J. In vivo bioluminescence imaging of granzyme B activity in tumor response to cancer immunotherapy. Cell Chem Biol 2022; 29:1556-1567.e6. [PMID: 36103874 PMCID: PMC9588750 DOI: 10.1016/j.chembiol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunotherapy has revolutionized the treatment of cancer, but only a small subset of patients benefits from this new treatment regime. Imaging tools are useful for early detection of tumor response to immunotherapy and probing the dynamic and complex immune system. Here, we report a bioluminescence probe (GBLI-2) for non-invasive, real-time, longitudinal imaging of granzyme B activity in tumors receiving immune checkpoint inhibitors. GBLI-2 is made of the mouse granzyme B tetrapeptide IEFD substrate conjugated to D-luciferin through a self-immolative group. GBLI-2 was evaluated for imaging the dynamics of the granzyme B activity and predicting therapeutic efficacy in a syngeneic mouse model of CT26 murine colorectal carcinoma. The GBLI-2 signal correlated with the change in the population of PD-1- and granzyme B-expressing CD8+ T cells in tumors.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaixiang Zhou
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheng-Yao Dai
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Preethi Bala Balakrishnan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fadi E I Rami
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tingting Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Mangan MSJ, Bird CH, Kaiserman D, Matthews AY, Hitchen C, Steer DL, Thompson PE, Bird PI. A Novel Serpin Regulatory Mechanism: SerpinB9 IS REVERSIBLY INHIBITED BY VICINAL DISULFIDE BOND FORMATION IN THE REACTIVE CENTER LOOP. J Biol Chem 2015; 291:3626-38. [PMID: 26670609 DOI: 10.1074/jbc.m115.699298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 02/01/2023] Open
Abstract
The intracellular protease inhibitor Sb9 (SerpinB9) is a regulator of the cytotoxic lymphocyte protease GzmB (granzyme B). Although GzmB is primarily involved in the destruction of compromised cells, recent evidence suggests that it is also involved in lysosome-mediated death of the cytotoxic lymphocyte itself. Sb9 protects the cell from GzmB released from lysosomes into the cytosol. Here we show that reactive oxygen species (ROS) generated within cytotoxic lymphocytes by receptor stimulation are required for lyososomal permeabilization and release of GzmB into the cytosol. Importantly, ROS also inactivate Sb9 by oxidizing a highly conserved cysteine pair (P1-P1' in rodents and P1'-P2' in other mammals) in the reactive center loop to form a vicinal disulfide bond. Replacement of the P4-P3' reactive center loop residues of the prototype serpin, SERPINA1, with the P4-P5' residues of Sb9 containing the cysteine pair is sufficient to convert SERPINA1 into a ROS-sensitive GzmB inhibitor. Conversion of the cysteine pair to serines in either human or mouse Sb9 results in a functional serpin that inhibits GzmB and resists ROS inactivation. We conclude that ROS sensitivity of Sb9 allows the threshold for GzmB-mediated suicide to be lowered, as part of a conserved post-translational homeostatic mechanism regulating lymphocyte numbers or activity. It follows, for example, that antioxidants may improve NK cell viability in adoptive immunotherapy applications by stabilizing Sb9.
Collapse
Affiliation(s)
- Matthew S J Mangan
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Catherina H Bird
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Dion Kaiserman
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Anthony Y Matthews
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Corinne Hitchen
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - David L Steer
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Philip E Thompson
- the Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, Parkville, Victoria 3052, Australia
| | - Phillip I Bird
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| |
Collapse
|
3
|
Hoekstra ME, Dijkgraaf FE, Schumacher TN, Rohr JC. Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol 2015; 36:392-400. [DOI: 10.1016/j.it.2015.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
|
4
|
Prakash MD, Munoz MA, Jain R, Tong PL, Koskinen A, Regner M, Kleifeld O, Ho B, Olson M, Turner SJ, Mrass P, Weninger W, Bird PI. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 2014; 41:960-72. [PMID: 25526309 DOI: 10.1016/j.immuni.2014.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 11/25/2014] [Indexed: 01/17/2023]
Abstract
Granzyme B (GzmB) is a protease with a well-characterized intracellular role in targeted destruction of compromised cells by cytotoxic lymphocytes. However, GzmB also cleaves extracellular matrix components, suggesting that it influences the interplay between cytotoxic lymphocytes and their environment. Here, we show that GzmB-null effector T cells and natural killer (NK) cells exhibited a cell-autonomous homing deficit in mouse models of inflammation and Ectromelia virus infection. Intravital imaging of effector T cells in inflamed cremaster muscle venules revealed that GzmB-null cells adhered normally to the vessel wall and could extend lamellipodia through it but did not cross it efficiently. In vitro migration assays showed that active GzmB was released from migrating cytotoxic lymphocytes and enabled chemokine-driven movement through basement membranes. Finally, proteomic analysis demonstrated that GzmB cleaved basement membrane constituents. Our results highlight an important role for GzmB in expediting cytotoxic lymphocyte diapedesis via basement membrane remodeling.
Collapse
Affiliation(s)
- Monica D Prakash
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Marcia A Munoz
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Rohit Jain
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Philip L Tong
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Aulikki Koskinen
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT 2600, Australia
| | - Matthias Regner
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT 2600, Australia
| | - Oded Kleifeld
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Bosco Ho
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew Olson
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paulus Mrass
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia
| | - Wolfgang Weninger
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
5
|
The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress. Cell Death Differ 2014; 21:876-87. [PMID: 24488096 DOI: 10.1038/cdd.2014.7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 01/20/2023] Open
Abstract
Cytotoxic lymphocytes (CLs) contain lysosome-related organelles (LROs) that perform the normal degradative functions of the lysosome, in addition to storage and release of powerful cytotoxins employed to kill virally infected or abnormal cells. Among these cytotoxins is granzyme B (GrB), a protease that has also been implicated in activation (restimulation)-induced cell death of natural killer (NK) and T cells, but the underlying mechanism and its regulation are unclear. Here we show that restimulation of previously activated human or mouse lymphocytes induces lysosomal membrane permeabilisation (LMP), followed by GrB release from LROs into the CL cytosol. The model lysosomal stressors sphingosine and Leu-Leu-methyl-ester, and CLs from gene-targeted mice were used to show that LMP releases GrB in both a time- and concentration-dependent manner, and that the liberated GrB is responsible for cell death. The endogenous GrB inhibitor Serpinb9 (Sb9) protects CLs against LMP-induced death but is decreasingly effective as the extent of LMP increases. We also used these model stressors to show that GrB is the major effector of LMP-mediated death in T cells, but that in NK cells additional effectors are released, making GrB redundant. We found that limited LMP and GrB release occurs constitutively in proliferating lymphocytes and in NK cells engaged with targets in vitro. In Ectromelia virus-infected lymph nodes, working NK cells lacking Sb9 are more susceptible to GrB-mediated death. Taken together, these data show that a basal level of LMP occurs in proliferating and activated lymphocytes, and is increased on restimulation. LMP releases GrB from LROs into the lymphocyte cytoplasm and its ensuing interaction with Sb9 dictates whether or not the cell survives. The GrB-Sb9 nexus may therefore represent an additional mechanism of limiting lymphocyte lifespan and populations.
Collapse
|
6
|
Mouchacca P, Guyot V, Grégoire C, Schmitt-Verhulst AM, Boyer C. Granzyme B-tdTomato, a new probe to visualize cytolytic effector cell activation. Eur J Immunol 2011; 42:264-6. [DOI: 10.1002/eji.201141671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/14/2011] [Accepted: 10/20/2011] [Indexed: 11/08/2022]
|
7
|
Martina JA, Wu XS, Catalfamo M, Sakamoto T, Yi C, Hammer JA. Imaging of lytic granule exocytosis in CD8+ cytotoxic T lymphocytes reveals a modified form of full fusion. Cell Immunol 2011; 271:267-79. [PMID: 21843881 PMCID: PMC3407469 DOI: 10.1016/j.cellimm.2011.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 11/27/2022]
Abstract
Here we imaged the exocytosis of lytic granules from human CD8(+) cytotoxic T lymphocytes using rapid total internal reflection microscopy, Lamp-1 tagged with mGFP to follow the fate of the lytic granule membrane, and granzyme A, granzyme B or serglycin tagged with mRFP to follow the fate of lytic granule cargo. Lytic granules were released by full fusion with the plasma membrane, such that the entire granule content for all three cargos visualized was released on a subsecond time scale. The behavior of GFP-Lamp-1 was, however, more complex. While it entered the plasma membrane in all cases, the extent to which it then diffused away from the site of exocytosis varied from nearly complete to highly restricted. Finally, the diffusion properties upon release of the three cargos examined put an upper limit on the size of the macromolecular complex of granzyme and serglycin that is presented to the target cell.
Collapse
Affiliation(s)
- Jose A. Martina
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| | - Xufeng S. Wu
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| | - Marta Catalfamo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Heath, Bethesda, Maryland
| | - Takeshi Sakamoto
- Department of Physics, Wayne State University, Detroit, Michigan
| | - Chang Yi
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| | - John A. Hammer
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| |
Collapse
|