1
|
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022; 17:2993-3012. [PMID: 35084820 PMCID: PMC9679999 DOI: 10.1021/acschembio.1c00689] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology and Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden 405 30
| | - Lawrence Meche
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - William Eng
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - David F. Smith
- Department
of Biochemistry, Glycomics Center, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lara K. Mahal
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States,Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2,E-mail:
| |
Collapse
|
2
|
Van Damme EJ, Barre A, Rougé P, Van Leuven F, Peumans WJ. The seed lectins of black locust (Robinia pseudoacacia) are encoded by two genes which differ from the bark lectin genes. PLANT MOLECULAR BIOLOGY 1995; 29:1197-1210. [PMID: 8616218 DOI: 10.1007/bf00020462] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two lectins were isolated from Robinia pseudoacacia (black locust) seeds using affinity chromatography on fetuin-agarose, and ion exchange chromatography on a Neobar CS column. The first lectin, R. pseudoacacia seed agglutinin I, referred to as RPsAI, is a homotetramer of four 34 kDa subunits whereas the second lectin, referred to as RPsAII, is composed of four 29 kDa polypeptides. cDNA clones encoding the polypeptides of RPsAI and RPsAII were isolated and their sequences were determined. Both polypeptides are translated from mRNAs of ca. 1.2 kb encoding a precursor carrying a signal peptide. Alignment of the deduced amino acid sequences of the different clones indicates that the 34 and 29 kDa seed lectin polypeptides show 95% sequence identity. In spite of this striking homology, the 29 kDa polypeptide has only one putative glycosylation site whereas the 34 kDa subunit has four of these sites. Carbohydrate analysis revealed that the 34 kDa possesses three carbohydrate chains whereas the 29 kDa polypeptide is only partially glycosylated at one site. A comparison of the deduced amino acid sequences of the two seed and three bark lectin polypeptides demonstrated unambiguously that they are encoded by different genes. This implies that five different genes are involved in the control of the expression of the lectins in black locust.
Collapse
Affiliation(s)
- E J Van Damme
- Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
3
|
Wantyghem J, Platzer N, Giner M, Derappe C, Goussault Y. Structural analysis of the carbohydrate chain of glycopeptides isolated from Robinia pseudoacacia seed lectins. Carbohydr Res 1992; 236:181-93. [PMID: 1337865 DOI: 10.1016/0008-6215(92)85015-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Robinia pseudoacacia seeds contain lectins which are closely related. Pronase digestion of the dimeric and tetrameric lectins, RPA1 and RPA3, gave glycopeptides. The structure of the oligosaccharide was determined by 1H NMR spectroscopy and carbohydrate determination as alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-[alpha-D-Manp+ ++-(1-->6)]-beta- D-Manp-(1-->4)-beta-D-GlcpNAc-(1-->4)-[alpha-L-Fucp-(1-->3)] -beta-D-GlcpNAc - (1-->4)-Asn. It appears that the 34-kDa constitutive polypeptide of RPA1 contains 4-5 carbohydrate chains whereas the 30.5-kDa and 29-kDa subunits of RPA3 contain two and one oligosaccharide chains, respectively.
Collapse
|