1
|
Rinaldi F, Fernández-Lucas J, de la Fuente D, Zheng C, Bavaro T, Peters B, Massolini G, Annunziata F, Conti P, de la Mata I, Terreni M, Calleri E. Immobilized enzyme reactors based on nucleoside phosphorylases and 2'-deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. BIORESOURCE TECHNOLOGY 2020; 307:123258. [PMID: 32247276 DOI: 10.1016/j.biortech.2020.123258] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
In this work, a mono- and a bi-enzymatic analytical immobilized enzyme reactors (IMERs) were developed as prototypes for biosynthetic purposes and their performances in the in-flow synthesis of nucleoside analogues of pharmaceutical interest were evaluated. Two biocatalytic routes based on nucleoside 2'-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) and uridine phosphorylase from Clostridium perfrigens (CpUP)/purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) were investigated in the synthesis of 2'-deoxy, 2',3'-dideoxy and arabinonucleoside derivatives. LrNDT-IMER catalyzed the synthesis of 5-fluoro-2'-deoxyuridine and 5-iodo-2'-deoxyuridine in 65-59% conversion yield, while CpUP/AhPNP-IMER provided the best results for the preparation of arabinosyladenine (60% conversion yield). Both IMERs proved to be promising alternatives to chemical routes for the synthesis of nucleoside analogues. The developed in-flow system represents a powerful tool for the fast production on analytical scale of nucleosides for preliminary biological tests.
Collapse
Affiliation(s)
- Francesca Rinaldi
- Department of Drug Sciences, Università degli Studi di Pavia, I-27100 Pavia, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, 080003 Barranquilla, Atlántico, Colombia
| | - Diego de la Fuente
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Changping Zheng
- CNRS, IPCM, UMR 8232, Sorbonne Université, 75005 Paris, France
| | - Teodora Bavaro
- Department of Drug Sciences, Università degli Studi di Pavia, I-27100 Pavia, Italy
| | - Benjamin Peters
- Instrumental Analytics R&D, Merck KGaA, DE-64271 Darmstadt, Germany
| | - Gabriella Massolini
- Department of Drug Sciences, Università degli Studi di Pavia, I-27100 Pavia, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, I-20133 Milan, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, I-20133 Milan, Italy
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marco Terreni
- Department of Drug Sciences, Università degli Studi di Pavia, I-27100 Pavia, Italy
| | - Enrica Calleri
- Department of Drug Sciences, Università degli Studi di Pavia, I-27100 Pavia, Italy.
| |
Collapse
|
2
|
Li J, Yu L, Li J, Xie L, Zhang R, Wang H. Establishment of a high throughput-screening system for nucleoside deoxyribosyltransferase II mutant enzymes with altered substrate specificity. J Biosci Bioeng 2019; 128:22-27. [DOI: 10.1016/j.jbiosc.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/23/2022]
|
3
|
Pérez E, Sánchez‐Murcia PA, Jordaan J, Blanco MD, Mancheño JM, Gago F, Fernández‐Lucas J. Enzymatic Synthesis of Therapeutic Nucleosides using a Highly Versatile Purine Nucleoside 2’‐DeoxyribosylTransferase from
Trypanosoma brucei. ChemCatChem 2018. [DOI: 10.1002/cctc.201800775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elena Pérez
- Applied Biotechnology GroupUniversidad Europea de Madrid Villaviciosa de Odón E-28670 Spain
| | - Pedro A. Sánchez‐Murcia
- Institute of Theoretical Chemistry Faculty of ChemistryUniversity of Vienna Vienna 1090 Austria
| | - Justin Jordaan
- Biotechnology Innovation CentreRhodes University Grahamstown 6140 South Africa
- ReSyn Biosciences Meiring Naudé Road Brummeria Pretoria 0184 South Africa
| | - María Dolores Blanco
- Department of Biochemistry and Molecular Biology III School of MedicineUniversidad Complutense Madrid E-28040 Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural BiologyRocasolano Institute (CSIC) Madrid E-28006 Spain
| | - Federico Gago
- Department of Biomedical Sciences and “U. A. IQM-CSIC” School of Medicine and Health SciencesUniversity of Alcalá Alcalá de Henares E-28805 Spain
| | - Jesús Fernández‐Lucas
- Applied Biotechnology GroupUniversidad Europea de Madrid Villaviciosa de Odón E-28670 Spain
- Grupo de Investigación en Desarrollo Agroindustrial SostenibleUniversidad de la Costa Barranquilla 080002 Colombia
| |
Collapse
|
4
|
Crespo N, Sánchez-Murcia PA, Gago F, Cejudo-Sanches J, Galmes MA, Fernández-Lucas J, Mancheño JM. 2'-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases. Appl Microbiol Biotechnol 2017; 101:7187-7200. [PMID: 28785897 DOI: 10.1007/s00253-017-8450-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.
Collapse
Affiliation(s)
- N Crespo
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, E-28006, Madrid, Spain.,Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - P A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria.,Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, E-28871, Alcalá de Henares, Spain
| | - F Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, E-28871, Alcalá de Henares, Spain
| | - J Cejudo-Sanches
- Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - M A Galmes
- Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain. .,Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Department of Agroindustrial Engineering, School of Environmental Sciences, Universidad de la Costa, Cra. 55 #58-66, Barranquilla, Colombia.
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, E-28006, Madrid, Spain.
| |
Collapse
|
5
|
Fresco-Taboada A, Serra I, Fernández-Lucas J, Acebal C, Arroyo M, Terreni M, de la Mata I. Nucleoside 2'-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus--preparation of an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 2014; 19:11231-49. [PMID: 25090115 PMCID: PMC6270756 DOI: 10.3390/molecules190811231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/16/2022] Open
Abstract
Nucleoside 2'-deoxyribosyltransferase (NDT) from the psychrophilic bacterium Bacillus psychrosaccharolyticus CECT 4074 has been cloned and produced for the first time. A preliminary characterization of the recombinant protein indicates that the enzyme is an NDT type II since it catalyzes the transfer of 2'-deoxyribose between purines and pyrimidines. The enzyme (BpNDT) displays a high activity and stability in a broad range of pH and temperature. In addition, different approaches for the immobilization of BpNDT onto several supports have been studied in order to prepare a suitable biocatalyst for the one-step industrial enzymatic synthesis of different therapeutic nucleosides. Best results were obtained by adsorbing the enzyme on PEI-functionalized agarose and subsequent cross-linking with aldehyde-dextran (20 kDa and 70% oxidation degree). The immobilized enzyme could be recycled for at least 30 consecutive cycles in the synthesis of 2'-deoxyadenosine from 2'-deoxyuridine and adenine at 37 °C and pH 8.0, with a 25% loss of activity. High conversion yield of trifluridine (64.4%) was achieved in 2 h when 20 mM of 2'-deoxyuridine and 10 mM 5-trifluorothymine were employed in the transglycosylation reaction catalyzed by immobilized BpNDT at 37 °C and pH 7.5.
Collapse
Affiliation(s)
- Alba Fresco-Taboada
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040 Madrid, Spain.
| | - Immacolata Serra
- Department of Drug Sciences and Italian Biocatalysis Center, Università degli Studi di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | - Jesús Fernández-Lucas
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040 Madrid, Spain.
| | - Carmen Acebal
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040 Madrid, Spain.
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040 Madrid, Spain.
| | - Marco Terreni
- Department of Drug Sciences and Italian Biocatalysis Center, Università degli Studi di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Marlière P, Patrouix J, Döring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R. Chemical Evolution of a Bacterium’s Genome. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Marlière P, Patrouix J, Döring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R. Chemical Evolution of a Bacterium’s Genome. Angew Chem Int Ed Engl 2011; 50:7109-14. [DOI: 10.1002/anie.201100535] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/15/2011] [Indexed: 11/08/2022]
|
8
|
Fernández-Lucas J, Acebal C, Sinisterra JV, Arroyo M, de la Mata I. Lactobacillus reuteri 2'-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl Environ Microbiol 2010; 76:1462-70. [PMID: 20048065 PMCID: PMC2832402 DOI: 10.1128/aem.01685-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/26/2009] [Indexed: 11/20/2022] Open
Abstract
A novel type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) has been cloned and overexpressed in Escherichia coli. The recombinant LrNDT has been structural and functionally characterized. Sedimentation equilibrium analysis revealed a homohexameric molecule of 114 kDa. Circular dichroism studies have showed a secondary structure containing 55% alpha-helix, 10% beta-strand, 16% beta-sheet, and 19% random coil. LrNDT was thermostable with a melting temperature (T(m)) of 64 degrees C determined by fluorescence, circular dichroism, and differential scanning calorimetric studies. The enzyme showed high activity in a broad pH range (4.6 to 7.9) and was also very stable between pH 4 and 7.9. The optimal temperature for activity was 40 degrees C. The recombinant LrNDT was able to synthesize natural and nonnatural nucleoside analogues, improving activities described in the literature, and remarkably, exhibited unexpected new arabinosyltransferase activity, which had not been described so far in this kind of enzyme. Furthermore, synthesis of new arabinonucleosides and 2'-fluorodeoxyribonucleosides was carried out.
Collapse
Affiliation(s)
- Jesús Fernández-Lucas
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - Carmen Acebal
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - José V. Sinisterra
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
9
|
Kaminski PA, Dacher P, Dugué L, Pochet S. In vivo reshaping the catalytic site of nucleoside 2'-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution. J Biol Chem 2008; 283:20053-9. [PMID: 18487606 DOI: 10.1074/jbc.m802706200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside 2'-deoxyribosyltransferases catalyze the transfer of 2-deoxyribose between bases and have been widely used as biocatalysts to synthesize a variety of nucleoside analogs. The genes encoding nucleoside 2'-deoxyribosyltransferase (ndt) from Lactobacillus leichmannii and Lactobacillus fermentum underwent random mutagenesis to select variants specialized for the synthesis of 2',3'-dideoxynucleosides. An Escherichia coli strain, auxotrophic for uracil and unable to use 2',3'-dideoxyuridine, cytosine, and 2',3'-dideoxycytidine as a source of uracil was constructed. Randomly mutated lactobacilli ndt libraries from two species, L. leichmannii and L. fermentum, were screened for the production of uracil with 2',3'-dideoxyuridine as a source of uracil. Several mutants suitable for the synthesis of 2',3'-dideoxynucleosides were isolated. The nucleotide sequence of the corresponding genes revealed a single mutation (G --> A transition) leading to the substitution of a small aliphatic amino acid by a nucleophilic one, A15T (L. fermentum) or G9S (L. leichmannii), respectively. We concluded that the "adaptation" of the nucleoside 2'-deoxyribosyltransferase activity to 2,3-dideoxyribosyl transfer requires an additional hydroxyl group on a key amino acid side chain of the protein to overcome the absence of such a group in the corresponding substrate. The evolved proteins also display significantly improved nucleoside 2',3'-didehydro-2',3'-dideoxyribosyltransferase activity.
Collapse
|
10
|
Kaminski PA. Functional cloning, heterologous expression, and purification of two different N-deoxyribosyltransferases from Lactobacillus helveticus. J Biol Chem 2002; 277:14400-7. [PMID: 11836245 DOI: 10.1074/jbc.m111995200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactobacillus helveticus contains two types of N-deoxyribosyltransferases: DRTase I catalyzes the transfer of 2'-deoxyribose between purine bases exclusively whereas DRTase II is able to transfer the 2'-deoxyribose between two pyrimidine or between pyrimidine and purine bases. An Escherichia coli strain, auxotrophic for guanine and unable to use deoxyguanosine as source of guanine, was constructed to clone the corresponding genes. By screening a genomic bank for the production of guanine, the L. helveticus ptd and ntd genes coding for DRTase I and II, respectively, were isolated. Although the two genes have no sequence similarity, the two deduced polypeptides display 25.6% identity, with most of the residues involved in substrate binding and the active site nucleophile Glu-98 being conserved. Overexpression and purification of the two proteins shows that DRTase I is specific for purines with a preference for deoxyinosine (dI) > deoxyadenosine > deoxyguanosine as donor substrates whereas DRTase II has a strong preference for pyrimidines as donor substrates and purines as base acceptors. Purine analogues were substrates as acceptor bases for both enzymes. Comparison of DRTase I and DRTase II activities with dI as donor or hypoxanthine as acceptor and colocalization of the ptd and add genes suggest a specific role for DRTase I in the metabolism of dI.
Collapse
Affiliation(s)
- Pierre Alexandre Kaminski
- Unité de Chimie Organique, CNRS Unité de Recherche Associée 2128, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|