1
|
Rahaman SH, Bodhak S, Balla VK, Bhattacharya D. Role of in-situ electrical stimulation on early-stage mineralization and in-vitro osteogenesis of electroactive bioactive glass composites. BIOMATERIALS ADVANCES 2025; 166:214062. [PMID: 39406157 DOI: 10.1016/j.bioadv.2024.214062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024]
Abstract
Bioactive glass (BAG) has emerged as an effective bone graft substitute due to its diverse qualities of biocompatibility, bioactivity, osteoblast adhesion and enhanced revascularization. However, inferior osteogenic capacity of BAG compared to autologous bone grafts continues to limiting it's wide-spread clinical applications towards repairing of bone fractures and healing. In this study, we have fabricated BAG composites with 0.5 to 2 wt% bismuth ferrite (BF, a multiferroic material) with an aim to generate in-situ electrical charges pertinent to early-stage bone regeneration thus mimicking natural bone, which is a piezoelectric material. The fabricated BAG composites were characterised in terms of microstructures, phase analysis, remanent polarization, wettability and subsequently evaluated for in vitro cell proliferation and osteogenesis with and without magnetic field exposure (200 mT, 30 min./day). Pre-osteoblast cells from mice (MC3T3-E1) seeded on these composites exhibited excellent cell growth without any cytotoxicity, which is further supported by FITC/DAPI staining and a live/dead assay. The results of Alizarin Red S assay and increased levels of Alkaline Phosphatase (ALP) activity, at 21 days of culture, suggest that the BAG-BF composites promote in vitro osteogenic differentiation of pre-osteoblast cells. The enhanced osteogenesis of BAG-BF composites was also confirmed through qRT-PCR analysis, which showed rapid upregulation of osteoblastogenic specific genes namely RunX-2, Collagen-1, Bone Sialo Protein, and ALP after 21 days. Additionally, the osteogenic differentiation was assessed by the Western Blot technique, which revealed significantly higher band intensity of osteogenic markers in BAG-1.5 BF and BAG-2 BF composites than pure BAG. These findings clearly demonstrate that in-situ electrical stimulation and osteoconductive capacity of BF reinforced BAG composites have positive impact on osteoblast cell development, bone formation, and healing.
Collapse
Affiliation(s)
- Sk Hasanur Rahaman
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Bodhak
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vamsi Krishna Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dipten Bhattacharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
2
|
Milani AS, Hadinia F, Rezaei Y, Soroush Barhaghi MH, Attari K, Nouroloyouni A. Addition of Bioactive Glass Decreases Setting Time and Improves Antibacterial Properties of Mineral Trioxide Aggregate. Int J Biomater 2024; 2024:4190647. [PMID: 39376512 PMCID: PMC11458293 DOI: 10.1155/2024/4190647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 10/09/2024] Open
Abstract
Objectives This study aimed to assess the effect of addition of bioactive glass (BG) on the setting time and antibacterial activity of mineral trioxide aggregate (MTA) against Enterococcus faecalis (E. faecalis). Materials and Methods In this in vitro study, BG was synthesized by the sol-gel technique and added to MTA powder in certain ratios. Three groups of specimens were fabricated from pure MTA, MTA mixed with 10wt% BG, and MTA mixed with 20wt% BG. The setting time of specimens was measured according to ISO9917-2007. Direct contact test was used to assess the antimicrobial activity of the three groups against E. faecalis. Data were analyzed by repeated measures ANOVA (alpha = 0.05). Results Addition of BG (in both concentrations) to MTA decreased its setting time and improved its antibacterial activity against E. faecalis (p < 0.05). By an increase in concentration of BG (20%), the antimicrobial activity further improved (p < 0.05). Conclusion Addition of BG to MTA in 10wt% and 20wt% concentrations decreased its setting time and improved its antibacterial activity against E. faecalis.
Collapse
Affiliation(s)
- Amin Salem Milani
- Endodontic Department, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Hadinia
- Endodontic Department, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashar Rezaei
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kamal Attari
- Endodontic Department, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Nouroloyouni
- Department of Orofacial Pain and Dysfunction, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Afkhami F, Chen Y, Walsh LJ, Peters OA, Xu C. Application of Nanomaterials in Endodontics. BME FRONTIERS 2024; 5:0043. [PMID: 38711803 PMCID: PMC11070857 DOI: 10.34133/bmef.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
Recent advancements in nanotechnology have introduced a myriad of potential applications in dentistry, with nanomaterials playing an increasing role in endodontics. These nanomaterials exhibit distinctive mechanical and chemical properties, rendering them suitable for various dental applications in endodontics, including obturating materials, sealers, retro-filling agents, and root-repair materials. Certain nanomaterials demonstrate versatile functionalities in endodontics, such as antimicrobial properties that bolster the eradication of bacteria within root canals during endodontic procedures. Moreover, they offer promise in drug delivery, facilitating targeted and controlled release of therapeutic agents to enhance tissue regeneration and repair, which can be used for endodontic tissue repair or regeneration. This review outlines the diverse applications of nanomaterials in endodontics, encompassing endodontic medicaments, irrigants, obturating materials, sealers, retro-filling agents, root-repair materials, as well as pulpal repair and regeneration. The integration of nanomaterials into endodontics stands poised to revolutionize treatment methodologies, presenting substantial potential advancements in the field. Our review aims to provide guidance for the effective translation of nanotechnologies into endodontic practice, serving as an invaluable resource for researchers, clinicians, and professionals in the fields of materials science and dentistry.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Yuan Chen
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Laurence J. Walsh
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Ove A. Peters
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Chun Xu
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre,
The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
Montazerian M, Gonçalves GVS, Barreto MEV, Lima EPN, Cerqueira GRC, Sousa JA, Malek Khachatourian A, Souza MKS, Silva SML, Fook MVL, Baino F. Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7477. [PMID: 36363085 PMCID: PMC9656675 DOI: 10.3390/ma15217477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.
Collapse
Affiliation(s)
- Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Geovanna V. S. Gonçalves
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Eunice P. N. Lima
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Glauber R. C. Cerqueira
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Julyana A. Sousa
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adrine Malek Khachatourian
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11155-1639, Iran
| | - Mairly K. S. Souza
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Suédina M. L. Silva
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
5
|
Premixed Calcium Silicate-Based Root Canal Sealer Reinforced with Bioactive Glass Nanoparticles to Improve Biological Properties. Pharmaceutics 2022; 14:pharmaceutics14091903. [PMID: 36145651 PMCID: PMC9506183 DOI: 10.3390/pharmaceutics14091903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, bioactive glass nanoparticles (BGns) have been acknowledged for their ability to promote interactions with the periapical tissue and enhance tissue regeneration by releasing therapeutic ions. However, there have been no studies on calcium silicate sealers with bioactive glass nanoparticle (BGn) additives. In the present study, a premixed calcium silicate root canal sealer reinforced with BGn (pre-mixed-RCS@BGn) was developed and its physicochemical features and biological effects were analyzed. Three specimens were in the trial: 0%, 0.5%, and 1% bioactive glass nanoparticles (BGns) were gradually added to the premixed type of calcium silicate-based sealer (pre-mixed-RCS). To elucidate the surface properties, scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy were used and flowability, setting time, solubility, and radiopacity were analyzed to evaluate the physical properties. Chemical properties were investigated by water contact angle, pH change, and ion release measurements. The antibacterial effects of the bioactive set sealers were tested with Enterococcus faecalis and the viability of human bone marrow-derived mesenchymal stem cells (hMSCs) with this biomaterial was examined. In addition, osteogenic differentiation was highly stimulated, which was confirmed by ALP (Alkaline phosphatase) activity and the ARS (Alizarin red S) staining of hMSCs. The pre-mixed-RCS@BGn satisfied the ISO standards for root canal sealers and maintained antimicrobial activity. Moreover, pre-mixed-RCS@BGn with more BGns turned out to have less cytotoxicity than pre-mixed-RCS without BGns while promoting osteogenic differentiation, mainly due to calcium and silicon ion release. Our results suggest that BGns enhance the biological properties of this calcium silicate-based sealer and that the newly introduced pre-mixed-RCS@BGn has the capability to be applied in dental procedures as a root canal sealer. Further studies focusing more on the biocompatibility of pre-mixed-RCS@BGn should be performed to investigate in vivo systems, including pulp tissue.
Collapse
|
6
|
Grischenko DN, Papynov EK, Medkov MA. Using the Extraction–Pyrolysis Method in Synthesis of Bioactive Glass. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579521320014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Oltramare R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Short- and Long-Term Dentin Bond Strength of Bioactive Glass-Modified Dental Adhesives. NANOMATERIALS 2021; 11:nano11081894. [PMID: 34443725 PMCID: PMC8398528 DOI: 10.3390/nano11081894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the short- and long-term effects of dental adhesives doped with nano-sized bioactive glass 45S5 (BAG) on the resin-dentin interfacial bond strength. Two etch-and-rinse adhesives (Adper Scotchbond Multi-Purpose (ASB) and Solobond Plus (SB)) and one self-etch adhesive (Clearfil SE Bond (CF)) were doped with different concentrations of BAG (5, 10, and 20 wt%). The unmodified (0 wt% BAG) commercial adhesives served as control groups. Dentin of 120 molars (n = 10 per group) was treated with the different adhesives, followed by buildups with a conventional composite restorative material. From each tooth, 14 sticks were prepared for micro-tensile bond strength (µTBS) testing. The sticks were stored in simulated body fluid at 37 °C and tested after 24 h or six months for µTBS and failure mode. Data were analyzed using Kruskal-Wallis tests in combination with post-hoc Conover-tests and Wilcoxon signed-rank tests at a level of significance of α = 0.05. After 24 h and six months, both etch-and-rinse adhesives with a low BAG content (up to 10 wt% for ASB and 5 wt% for SB) showed similar µTBSs as their respective control groups (0 wt% BAG). CF showed a significant decrease in µTBS even after addition of 5 wt% BAG. At a high concentration of added BAG (20 wt%), all three adhesives showed a significant decrease in µTBS compared to the unmodified controls. The CF control group showed significantly lower µTBS after 6 months of storage than after 24 h. In contrast, the µTBS of all CF groups modified with BAG was unaffected by aging. In conclusion, the tested etch-and-rinse adhesives can be modified with up to 5 wt% (SB), or 10 wt% (ASB) of BAG without reducing their short- and long-term dentin bond strength. Moreover, the addition of nano-sized BAG may prevent long-term bond strength deterioration of a self-etch adhesive.
Collapse
Affiliation(s)
- Ramona Oltramare
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Correspondence: ; Tel.: +41-44-634-33-63
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Dirk Mohn
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel B. Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| | - Tobias T. Tauböck
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| |
Collapse
|
8
|
JÄger F, Mohn D, Attin T, TaubÖck TT. Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses. Dent Mater J 2020; 40:110-115. [PMID: 32863377 DOI: 10.4012/dmj.2019-382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the effect of adding bioactive glass 45S5 (BG) of different particle sizes to dental composite on resin polymerization and shrinkage stress formation. Commercial flowable composite was mixed with either 15 wt% BG fillers (nanometric, micrometric, or hybrid BG) or inert barium glass. Real-time linear polymerization shrinkage and shrinkage stress were recorded, and the degree of conversion was measured using FTIR spectroscopy. The commercial (unmodified) composite developed significantly higher linear shrinkage and shrinkage stress than the groups with 15 wt% added inert or BG fillers. After adding inert barium glass, the composite showed significantly higher linear shrinkage than when micrometric BG was added. The addition of bioactive or inert glass fillers did not affect the degree of conversion. Shrinkage stress can be reduced by adding inert or bioactive fillers (nano- and/or microparticulate BG) without affecting monomer conversion.
Collapse
Affiliation(s)
- Franziska JÄger
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich
| | - Dirk Mohn
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich.,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich
| | - Tobias T TaubÖck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich
| |
Collapse
|
9
|
Abdel Raheem IA, Abdul Razek A, Elgendy AA, Labah DA, Saleh NM. Egyptian Propolis-Loaded Nanoparticles as a Root Canal Nanosealer: Sealing Ability and in vivo Biocompatibility. Int J Nanomedicine 2020; 15:5265-5277. [PMID: 32884255 PMCID: PMC7434463 DOI: 10.2147/ijn.s258888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Successful endodontic therapy is mainly governed by the satisfactory sealing ability of the applied root canal sealer. Also, tolerability of root canal structure to accommodate the presence of a sealer participates in the efficiency of the treatment. Hence, this study was aimed to extrapolate our previous one that was concerned with the preparation and evaluation of novel nature-based root canal sealers. Our current work is focused on the evaluation of sealing ability and in vivo biocompatibility. Materials and Methods Egyptian propolis was extracted (ProE) and encapsulated in polymeric nanoparticles (ProE-loaded NPs). Two root sealers, PE sealer and PE nanosealer, were fabricated by incorporating ProE and ProE-loaded NPs, respectively. The sealing ability of the developed sealers was tested by a dye extraction method. An in vivo biocompatibility study was conducted using a subcutaneous implantation method for two and four weeks. At the same time, a model sealer (AH Plus®) was subjected to the same procedures to enable accurate and equitable results. Results The teeth treated with PE sealer exhibited weak sealing ability which did not differ from that of unfilled teeth. PE nanosealer enhanced the sealing ability similarly to the model sealer with minimal apical microleakage. Studying in vivo biocompatibility indicated the capability of the three tested sealers to induce cell proliferation and tissue healing. However, PE nanosealer had superior biocompatibility, with higher potential for cell regeneration and tissue proliferation. Conclusion PE nanosealer can be presented as an innovative root canal sealer, with enhanced sealing ability as well as in vivo biocompatibility. It can be applied as a substitute for the currently available sealers that demonstrate hazardous effects.
Collapse
Affiliation(s)
| | - Amro Abdul Razek
- Endodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Doaa Ahmed Labah
- Oral Biology and Dental Medicine Department, Faculty of Dentistry, Zagazig University, Zagazig, Egypt
| | - Noha Mohamed Saleh
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Almaimouni YK, Hamid SK, Ilyas K, Shah AT, Majeed A, Khan AS. Structural, fluoride release, and 3D interfacial adhesion analysis of bioactive endodontic sealers. Dent Mater J 2020; 39:483-489. [PMID: 32092723 DOI: 10.4012/dmj.2019-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The experimental bioactive sealers were synthesized by incorporating fluoridated-nano-bioactive glass (F-nBG; 2.5 and 5wt%) in AH Plus® (Dentsply DeTrey, Konstanz, Germany) sealer and denoted as AH-FBG2.5 and AH-FBG5, respectively. Structural pattern, setting time, flowability, and water sorption analysis were performed. The fluoride release behavior was evaluated periodically over the course of 40 days using inductively coupled plasma optical emission spectroscopy. For sealing ability, post-extraction single-rooted teeth were obturated with sealers. The percentage of voids and sealing ability were evaluated periodically using micro-computed tomography (micro-CT) followed by push-out bond strength. The Fourier transform infrared spectra showed a change in peak height with an increase in the concentration of fillers. The setting time, flowability, and water sorption of experimental groups were within the acceptable clinical range. The fluoride release, sealing ability, and bond strength of experimental sealers were significantly high. The experimental sealers have potential to overcome sealing ability issues of sealers.
Collapse
Affiliation(s)
- Yara Khalid Almaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | | | - Kanwal Ilyas
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad
| | - Asma Tufail Shah
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad
| | - Abdul Majeed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| |
Collapse
|
11
|
Odermatt R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass. J Clin Med 2020; 9:E772. [PMID: 32178372 PMCID: PMC7141313 DOI: 10.3390/jcm9030772] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023] Open
Abstract
Bioactive resin composites can contribute to the prevention of secondary caries, which is one of the main reasons for failure of contemporary dental restorations. This study investigated the effect of particle size of bioactive glass 45S5 on chemical and physical composite properties. Four experimental composites were prepared by admixing the following fillers into a commercial flowable composite: (1) 15 wt% of micro-sized bioactive glass, (2) 15 wt% of nano-sized bioactive glass, (3) a combination of micro- (7.5 wt%) and nano-sized (7.5 wt%) bioactive glass, and (4) 15 wt% of micro-sized inert barium glass. Hydroxyapatite precipitation and pH rise in phosphate-buffered saline were evaluated during 28 days. Degree of conversion and Knoop microhardness were measured 24 h after specimen preparation and after 28 days of phosphate-buffered saline immersion. Data were analyzed using non-parametric statistics (Kruskal-Wallis and Wilcoxon tests) at an overall level of significance of 5%. Downsizing the bioactive glass particles from micro- to nano-size considerably improved their capability to increase pH. The effect of nano-sized bioactive glass on degree of conversion and Knoop microhardness was similar to that of micro-sized bioactive glass. Composites containing nano-sized bioactive glass formed a more uniform hydroxyapatite layer after phosphate-buffered saline immersion than composites containing exclusively micro-sized particles. Partial replacement of nano- by micro-sized bioactive glass in the hybrid composite did not impair its reactivity, degree of conversion (p > 0.05), and Knoop microhardness (p > 0.05). It is concluded that downsizing bioactive glass particles to nano-size improves the alkalizing potential of experimental composites with no negative effects on their fundamental properties.
Collapse
Affiliation(s)
- Reto Odermatt
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Matej Par
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dirk Mohn
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel B. Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
12
|
Dieckmann P, Mohn D, Zehnder M, Attin T, Tauböck TT. Light Transmittance and Polymerization of Bulk-Fill Composite Materials Doped with Bioactive Micro-Fillers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4087. [PMID: 31817830 PMCID: PMC6947388 DOI: 10.3390/ma12244087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
This study investigated the effect of bioactive micro-fillers on the light transmittance and polymerization of three commercially available bulk-fill resin composites. These were mixed with 20 wt% bioactive glass 45S5, Portland cement, inert dental barium glass, or nothing (controls). Composites were photo-activated and light transmittance through 4 mm thick specimens was measured in real time. Moreover, degree of conversion (DC) and Knoop hardness (KHN) were assessed. Light transmittance of all bulk-fill composites significantly decreased (p < 0.05) with addition of 20 wt% bioactive glass 45S5 but not when inert barium glass was added. For bulk-fill composites modified with Portland cement, light irradiance dropped below the detection limit at 4 mm depth. The DC at the top surface of the specimens was not affected by addition of bioactive or inert micro-fillers. The bottom-to-top ratio of both DC and KHN surpassed 80% for bulk-fill composites modified with 20 wt% bioactive or inert glass fillers but fell below 20% when the composites were modified with Portland cement. In contrast to Portland cement, the addition of 20 wt% bioactive glass maintains adequate polymerization of bulk-fill composites placed at 4 mm thickness, despite a decrease in light transmittance compared to the unmodified materials.
Collapse
Affiliation(s)
- Phoebe Dieckmann
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.D.); (D.M.); (M.Z.); (T.A.)
| | - Dirk Mohn
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.D.); (D.M.); (M.Z.); (T.A.)
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthias Zehnder
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.D.); (D.M.); (M.Z.); (T.A.)
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.D.); (D.M.); (M.Z.); (T.A.)
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.D.); (D.M.); (M.Z.); (T.A.)
| |
Collapse
|
13
|
Jerri Al-Bakhsh BA, Shafiei F, Hashemian A, Shekofteh K, Bolhari B, Behroozibakhsh M. In-vitro bioactivity evaluation and physical properties of an epoxy-based dental sealer reinforced with synthesized fluorine-substituted hydroxyapatite, hydroxyapatite and bioactive glass nanofillers. Bioact Mater 2019; 4:322-333. [PMID: 31709315 PMCID: PMC6833307 DOI: 10.1016/j.bioactmat.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to evaluate the physical properties and bioactivity potential of epoxy-based dental sealers modified with synthesized bioactive glass (BAG), hydroxyapatite (HA) and fluorine substituted hydroxyapatite (FHA) nanoparticles. The synthesized powders were incorporated at 10% and 20% into the epoxy-based dental sealer. The setting time, flow and solubility and microhardness of the modified and unmodified samples were examined. The bioactivity was evaluated using FESEM-EDX and elemental mapping, ATR-FTIR and XRD. The flow value of all of the experimental groups except the FHA modified samples, was greater than 20 mm. Concerning solubility, no specimens exhibited more than 1% weight loss. The solubility value of the FHA groups was statistically significant lower than other groups (p ≤ 0.001). The mean hardness values of all of the modified samples were significantly higher than the unmodified group (p ≤ 0.001). Regarding bioactivity, in vitro study revealed that after 3 days immersion in SBF a compact and continuous calcium phosphate layer formed on the surface of epoxy sealers containing BAG and HA nanoparticles. Based on these results, the addition of BAG and HA nanoparticles did not adversely alter the physical properties of epoxy sealers. Additionally, they improved the in vitro bioactivity of the epoxy sealer. Since root canal sealers are in direct contact with the periapical tissue, ideally, they should be composed of a bioactive material. It is important that the added bioactive fillers don't adversely affect the physical properties of the material.
Collapse
Affiliation(s)
- Bahaa Abdulrazzaq Jerri Al-Bakhsh
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Conservative Dentistry, Dental School of University of Basra, Basra, Iraq
| | - Farhad Shafiei
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemian
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Shekofteh
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Bolhari
- Department of Endodontic, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Novel Bioactive Zinc Phosphate Dental Cement with Low Irritation and Enhanced Microhardness. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2018. [DOI: 10.1380/ejssnt.2018.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|