1
|
Thurlow F, Huynh M, Townshend A, McLaren SJ, James LP, Taylor JM, Weston M, Weakley J. The Effects of Repeated-Sprint Training on Physical Fitness and Physiological Adaptation in Athletes: A Systematic Review and Meta-Analysis. Sports Med 2024; 54:953-974. [PMID: 38041768 DOI: 10.1007/s40279-023-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Repeated-sprint training (RST) is a common training method for enhancing physical fitness in athletes. To advance RST prescription, it is important to understand the effects of programming variables on physical fitness and physiological adaptation. OBJECTIVES This study (1) quantifies the pooled effects of running RST on changes in 10 and 20 m sprint time, maximal oxygen consumption (VO2max), Yo-Yo Intermittent Recovery Test Level 1 (YYIR1) distance, repeated-sprint ability (RSA), countermovement jump (CMJ) height and change of direction (COD) ability in athletes, and (2) examines the moderating effects of program duration, training frequency, weekly volume, sprint modality, repetition distance, number of repetitions per set and number of sets per session on changes in these outcome measures. METHODS Pubmed, SPORTDiscus and Scopus databases were searched for original research articles up to 04 July 2023, investigating RST in healthy, able-bodied athletes, between 14 and 35 years of age, and a performance calibre of trained or above. RST interventions were limited to repeated, maximal running (land-based) sprints of ≤ 10 s duration, with ≤ 60 s recovery, performed for 2-12 weeks. A Downs and Black checklist was used to assess the methodological quality of the included studies. Eligible data were analysed using multi-level mixed-effects meta-analysis, with standardised mean changes determined for all outcomes. Standardised effects [Hedges G (G)] were evaluated based on coverage of their confidence (compatibility) intervals (CI) using a strength and conditioning specific reference value of G = 0.25 to declare an improvement (i.e. G > 0.25) or impairment (i.e. G < - 0.25) in outcome measures. Applying the same analysis, the effects of programming variables were then evaluated against a reference RST program, consisting of three sets of 6 × 30 m straight-line sprints performed twice per week for 6 weeks (1200 m weekly volume). RESULTS 40 publications were included in our investigation, with data from 48 RST groups (541 athletes) and 19 active control groups (213 athletes). Across all studies, the effects of RST were compatible with improvements in VO2max (G 0.56, 90% CI 0.32-0.80), YYIR1 distance (G 0.61, 90% CI 0.43-0.79), RSA decrement (G - 0.61, 90% CI - 0.85 to - 0.37), linear sprint times (10 m: G - 0.35, 90% CI - 0.48 to - 0.22; 20 m: G - 0.48, 90% CI - 0.69 to - 0.27), RSA average time (G - 0.34, 90% CI - 0.49 to - 0.18), CMJ height (G 0.26, 90% CI 0.13-0.39) and COD ability (G - 0.32, 90% CI - 0.52 to - 0.12). Compared with the reference RST program, the effects of manipulating training frequency (+ 1 session per week), program duration (+ 1 extra training week), RST volume (+ 200 m per week), number of reps (+ 2 per set), number of sets per session (+ 1 set) or rep distance (+ 10 m per rep) were either non-substantial or comparable with an impairment in at least one outcome measure per programming variable. CONCLUSIONS Running-based RST improves speed, intermittent running performance, VO2max, RSA, COD ability and CMJ height in trained athletes. Performing three sets of 6 × 30 m sprints, twice per week for 6 weeks is effective for enhancing physical fitness and physiological adaptation. Additionally, since our findings do not provide conclusive support for the manipulation of RST variables, further work is needed to better understand how programming factors can be manipulated to augment training-induced adaptations. STUDY REGISTRATION Open Science Framework registration https://doi.org/10.17605/OSF.IO/RVNDW .
Collapse
Affiliation(s)
- Fraser Thurlow
- School of Behavioural and Health Sciences, Australian Catholic University, 1100 Nudgee Road, Banyo, QLD, 4014, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, QLD, Australia.
| | - Minh Huynh
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, & Sport, La Trobe University, Melbourne, VIC, Australia
| | - Andrew Townshend
- School of Behavioural and Health Sciences, Australian Catholic University, 1100 Nudgee Road, Banyo, QLD, 4014, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, QLD, Australia
| | - Shaun J McLaren
- Newcastle Falcons Rugby Club, Newcastle Upon Tyne, UK
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Lachlan P James
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, & Sport, La Trobe University, Melbourne, VIC, Australia
| | - Jonathon M Taylor
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Matthew Weston
- Physical Education and Health Sciences (ISPEHS), Moray House School of Education and Sport, The University of Edinburgh, Edinburgh, UK
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, 1100 Nudgee Road, Banyo, QLD, 4014, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, QLD, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds, UK
| |
Collapse
|
2
|
Thurlow F, Weakley J, Townshend AD, Timmins RG, Morrison M, McLaren SJ. The Acute Demands of Repeated-Sprint Training on Physiological, Neuromuscular, Perceptual and Performance Outcomes in Team Sport Athletes: A Systematic Review and Meta-analysis. Sports Med 2023; 53:1609-1640. [PMID: 37222864 PMCID: PMC10356687 DOI: 10.1007/s40279-023-01853-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Repeated-sprint training (RST) involves maximal-effort, short-duration sprints (≤ 10 s) interspersed with brief recovery periods (≤ 60 s). Knowledge about the acute demands of RST and the influence of programming variables has implications for training prescription. OBJECTIVES To investigate the physiological, neuromuscular, perceptual and performance demands of RST, while also examining the moderating effects of programming variables (sprint modality, number of repetitions per set, sprint repetition distance, inter-repetition rest modality and inter-repetition rest duration) on these outcomes. METHODS The databases Pubmed, SPORTDiscus, MEDLINE and Scopus were searched for original research articles investigating overground running RST in team sport athletes ≥ 16 years. Eligible data were analysed using multi-level mixed effects meta-analysis, with meta-regression performed on outcomes with ~ 50 samples (10 per moderator) to examine the influence of programming factors. Effects were evaluated based on coverage of their confidence (compatibility) limits (CL) against elected thresholds of practical importance. RESULTS From 908 data samples nested within 176 studies eligible for meta-analysis, the pooled effects (± 90% CL) of RST were as follows: average heart rate (HRavg) of 163 ± 9 bpm, peak heart rate (HRpeak) of 182 ± 3 bpm, average oxygen consumption of 42.4 ± 10.1 mL·kg-1·min-1, end-set blood lactate concentration (B[La]) of 10.7 ± 0.6 mmol·L-1, deciMax session ratings of perceived exertion (sRPE) of 6.5 ± 0.5 au, average sprint time (Savg) of 5.57 ± 0.26 s, best sprint time (Sbest) of 5.52 ± 0.27 s and percentage sprint decrement (Sdec) of 5.0 ± 0.3%. When compared with a reference protocol of 6 × 30 m straight-line sprints with 20 s passive inter-repetition rest, shuttle-based sprints were associated with a substantial increase in repetition time (Savg: 1.42 ± 0.11 s, Sbest: 1.55 ± 0.13 s), whereas the effect on sRPE was trivial (0.6 ± 0.9 au). Performing two more repetitions per set had a trivial effect on HRpeak (0.8 ± 1.0 bpm), B[La] (0.3 ± 0.2 mmol·L-1), sRPE (0.2 ± 0.2 au), Savg (0.01 ± 0.03) and Sdec (0.4; ± 0.2%). Sprinting 10 m further per repetition was associated with a substantial increase in B[La] (2.7; ± 0.7 mmol·L-1) and Sdec (1.7 ± 0.4%), whereas the effect on sRPE was trivial (0.7 ± 0.6). Resting for 10 s longer between repetitions was associated with a substantial reduction in B[La] (-1.1 ± 0.5 mmol·L-1), Savg (-0.09 ± 0.06 s) and Sdec (-1.4 ± 0.4%), while the effects on HRpeak (-0.7 ± 1.8 bpm) and sRPE (-0.5 ± 0.5 au) were trivial. All other moderating effects were compatible with both trivial and substantial effects [i.e. equal coverage of the confidence interval (CI) across a trivial and a substantial region in only one direction], or inconclusive (i.e. the CI spanned across substantial and trivial regions in both positive and negative directions). CONCLUSIONS The physiological, neuromuscular, perceptual and performance demands of RST are substantial, with some of these outcomes moderated by the manipulation of programming variables. To amplify physiological demands and performance decrement, longer sprint distances (> 30 m) and shorter, inter-repetition rest (≤ 20 s) are recommended. Alternatively, to mitigate fatigue and enhance acute sprint performance, shorter sprint distances (e.g. 15-25 m) with longer, passive inter-repetition rest (≥ 30 s) are recommended.
Collapse
Affiliation(s)
- Fraser Thurlow
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia.
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Andrew D Townshend
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Matthew Morrison
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Shaun J McLaren
- Newcastle Falcons Rugby Club, Newcastle Upon Tyne, UK
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Abstract
The objective of this paper was to determine the relationship between hand grip strength and movement time (locomotor efficiency in a seated position using the upper and lower extremities) in sitting volleyball players. In addition, a comparison was made between the velocity curves for forward and backward locomotion. Nine male members of the sitting volleyball team participated in the study. Hydraulic and spring manual dynamometers were used to measure hand grip strength. Movement times were registered for distances of 1, 2, 3, 4, 5, 6 and 10-m with the use of the Smart Speed System photocells. Significant relationships between hand grip strength of the left (rs=-0.78) and right (rs=-0.73) hands and the forward movement time over a distance of 1-m were found. Hand grip strength had no significant relationship with either forward movement times at other distances or backward movement times. Results suggest that hand strength is linked to locomotor efficiency of sitting volleyball players. High hand grip strength makes the start easier by pushing away from the ground with the upper limbs.
Collapse
|
4
|
Bonet JB, Magalhães J, Viscor G, Pagès T, Javierre CF, Torrella JR. A field tool for the aerobic power evaluation of middle-aged female recreational runners. Women Health 2020; 60:839-848. [PMID: 32223364 DOI: 10.1080/03630242.2020.1746953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study used time to exhaustion (TTE) to predict V̇O2max in female recreational master runners. Forty-two middle-aged women (mean = 40.5 ± 5.9 years) who had trained for recreational running performed two Université de Montréal Track Tests in the facilities of the University of Barcelona (Spain). The first was performed on a treadmill (t), the second, on an athletics track (field: f). After measuring TTE and V̇O2max on the treadmill, a first-order equation was obtained to estimate fV̇O2max from fTTE. No significant difference was observed between the estimated fV̇O2max (46.5 ± 2.9 mL·kg-1·min-1) and the measured tV̇O2max (46.2 ± 5.3), with a mean value of the absolute differences of less than 8% of the tV̇O2max average. High agreement between the two V̇O2max values was also evident, as shown by the low bias of the differences and the Bland-Altman plot. The equation obtained is of interest to evaluate performance in middle-aged female recreational runners. It will allow coaches and runners to set running paces for training and could be used in training routines to determine improvements after a training program. Moreover, these tools could be used in the field to assess the physical fitness of middle-aged women, in efforts to preserve their health and physical function.
Collapse
Affiliation(s)
- J B Bonet
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat De Biologia, Universitat de Barcelona , Barcelona, Spain
| | - J Magalhães
- LaMetEx - Laboratory of Metabolism and Exercise, Centro de Investigação em Atividade Física eLazer (CIAFEL), Faculdade de Desporto, Universidade do Porto , Porto, Portugal
| | - G Viscor
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat De Biologia, Universitat de Barcelona , Barcelona, Spain
| | - T Pagès
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat De Biologia, Universitat de Barcelona , Barcelona, Spain
| | - C F Javierre
- Departament de Ciències Fisiològiques ii, Facultat de Ciències de la Salut iMedicina, Campus de Bellvitge, Universitat de Barcelona , Barcelona, Spain
| | - J R Torrella
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat De Biologia, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
5
|
Effects of sprint interval training on sloping surfaces on aerobic and anaerobic power. BIOMEDICAL HUMAN KINETICS 2020. [DOI: 10.2478/bhk-2020-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Summary
Study aim: Several sprint interval training applications with different slope angles in the literature mostly focused on sprint running time and kinematic and dynamic properties of running. There is a lack of comparative studies investigating aerobic and anaerobic power. Therefore, this study aimed to examine the effects of sprint interval training on sloping surfaces on anaerobic and aerobic power.
Material and methods: A total of 34 male recreationally active men aged 20.26 ± 1.68 years and having a BMI of 21.77 ± 1.74 were assigned to one of the five groups as control (CON), uphill training (EXP
1
), downhill training (EXP
2
), uphill + downhill training (EXP
3
) and horizontal running training (EXP
4
) groups. Gradually increased sprint interval training was performed on horizontal and sloping surfaces with an angle of 4°. The training period continued for three days a week for eight weeks. The initial and the final aerobic power was measured by an oxygen analyser and anaerobic power was calculated from the results of the Margaria-Kalamen staircase test.
Results: Following the training programme, an increase in aerobic power was found in all training groups (EXP
1
= 20.79%, EXP
2
= 14.95%, EXP
3
= 26.85%, p < 0.01) and EXP
4
= 20.46%) (p < 0.05) in comparison with the CON group (0.12%), but there were no differences among the training groups. However, significant increases in anaerobic power were found in uphill training (4.91%) and uphill + downhill training (8.35%) groups (p < 0.05).
Conclusion: This study showed that all sprint interval studies on horizontal and sloping surfaces have a positive effect on aerobic power, and uphill and combined training are the most effective methods for the improvement of anaerobic power.
Collapse
|
6
|
Erylmaz SK, Kaynak K, Polat M, Aydoğan S. EFFECTS OF REPEATED SPRINT TRAINING ON ISOCAPNIC BUFFERING PHASE IN VOLLEYBALL PLAYERS. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182404185842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: The region between the ventilatory threshold (VT) and respiratory compensation point (RCP) is defined as the isocapnic buffering (ICB) phase and represents a phase of compensation for exercise-induced metabolic acidosis. There is sparse literature examining the effects of physical training on ICB phase in athletes. Objectives: The purpose of this study was to examine the effects of a repeated sprint training program on the ICB phase of college volleyball players. Methods: Eighteen male volleyball players were randomly assigned to either an experimental group (n=9) or a control group (n=9) and followed a traditional volleyball training program three times per week for six weeks. The experimental group additionally performed a repeated sprint training protocol immediately before each volleyball training session. Before and after the 6-week training period, all participants performed an incremental treadmill test to determine VT, RCP, and maximal oxygen uptake (VO2max). The ICB phases were calculated as VO2 (ml/kg/min) and sprint speed (km/h). Results: The experimental group showed significant improvements in ICB phase, RCP, VO2max and maximal sprint speed after training (p<0.01). There were no significant changes in VT after training in the experimental group (p>0.05). None of these variables changed significantly in the control group (p>0.05). Conclusions: These findings indicate that repeated sprint training can enhance the ICB phase of volleyball players, which may be attributable to an improvement in buffering capacity leading to a shift in RCP towards higher intensities without any change in VT. The increase in the ICB phase may an important factor in terms of improvement in the high-intensity exercise tolerance of athletes. Level of Evidence II; Therapeutic studies - Investigating the results of treatment.
Collapse
|