1
|
Hatawsh A, Al-Haddad RH, Okafor UG, Diab LM, Dekanoidze N, Abdulwahab AA, Mohammed OA, Doghish AS, Moussa R, Elimam H. Mitoepigenetics pathways and natural compounds: a dual approach to combatting hepatocellular carcinoma. Med Oncol 2024; 41:302. [PMID: 39465473 DOI: 10.1007/s12032-024-02538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Collapse
Affiliation(s)
- Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Roya Hadi Al-Haddad
- Research and Technology Center of Environment, Water and Renewable Energy, Scientific Research Commission, Baghdad, Iraq
| | | | - Lamis M Diab
- Department of Medical Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sādāt, 32897, Egypt.
| |
Collapse
|
2
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
3
|
Albini A, Noonan DM, Corradino P, Magnoni F, Corso G. The Past and Future of Angiogenesis as a Target for Cancer Therapy and Prevention. Cancer Prev Res (Phila) 2024; 17:289-303. [PMID: 38714356 DOI: 10.1158/1940-6207.capr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Cancer growth is dependent on angiogenesis, the formation of new blood vessels, which represents a hallmark of cancer. After this concept was established in the 1970s, inhibition of tumor development and metastases by blocking the neoangiogenic process has been an important approach to the treatment of tumors. However, antiangiogenic therapies are often administered when cancer has already progressed. The key to reducing the cancer burden is prevention. We noticed 20 years ago that a series of possible cancer chemopreventive agents showed antiangiogenic properties when tested in experimental models. This article reviews the relevant advances in the understanding of the rationale for targeting angiogenesis for cancer therapy, prevention, and interception and recently investigated substances with antiangiogenic activity that may be suitable for such strategies. Many compounds, either dietary derivatives or repurposed drugs, with antiangiogenic activity are possible tools for cancer angioprevention. Such molecules have a favorable safety profile and are likely to allow the prolonged duration necessary for an efficient preventive strategy. Recent evidence on mechanisms and possible use is described here for food derivatives, including flavonoids, retinoids, triterpenoids, omega fatty acids, and carotenoids from marine microorganisms. As examples, a number of compounds, including epigallocatechin, resveratrol, xanthohumol, hydroxytyrosol, curcumin, fenretinide, lycopene, fucoxanthin, and repurposed drugs, such as aspirin, β blockers, renin-angiotensin-aldosterone inhibitors, carnitines, and biguanides, are reviewed.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Paola Corradino
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Magnoni
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, El-Huneidi W, Saleh MA, Alzoubi KH, Semreen MH, Hudaib M, Bustanji Y. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel) 2024; 17:195. [PMID: 38399410 PMCID: PMC10892333 DOI: 10.3390/ph17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.
Collapse
Affiliation(s)
- Reem A. Qannita
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ayah I. Alalami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shereen M. Aleidi
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Hudaib
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| |
Collapse
|