1
|
Siangliw JL, Ruangsiri M, Theerawitaya C, Cha-um S, Poncheewin W, Songtoasesakul D, Thunnom B, Ruanjaichon V, Toojinda T. Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2932. [PMID: 39458879 PMCID: PMC11510876 DOI: 10.3390/plants13202932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Nitrogen use efficiency (NUE) is important for the growth and development of rice and is significant in reducing the costs of rice production. OsNRT1.1b is involved in nitrate assimilation, and the alleles at position 21,759,092 on chromosome 10 clearly separate indica (Pathum Thani 1 (PTT1) and Homcholasit (HCS)) and japonica (Azucena and Leum Pua (LP)) rice varieties. Rice morphological and physiological traits were collected at three nitrogen levels (N0 = 0 kg ha-1, N7 = 43.75 kg ha-1, and N14 = 87.5 kg ha-1). Leaf and tiller numbers in PTT1 and HCS at N7 and N14 were two to three times higher than those at N0. At harvest, the biomass yield in PTT1 was the highest, while the total grain number in HCS was the maximum. The leaf widths and total chlorophyll contents (SPAD units) of Azucena and LP increased with nitrogen application as well as photosynthetic pigment parameters; for example, plant senescence reflectance indices (PSRIs), structure-insensitive pigment indices (SIPIs), and modified chlorophyll absorption ratio indices (MCARIs) were highly related in the japonica varieties. PTT1 and HCS, both carrying the A allele at OsNRT1.1b, had better NUE than Azucena and LP with the G allele. HCS, overall, had better NUE than PTT1. The translation to grain yield of assimilates was remarkable in PTT1 and HCS compared with Azucena and LP. In addition, HCS converted biomass for a 75% higher yield than PTT1. The ability of HCS to produce high yields was achieved even at N7 nitrogen fertilization, manifesting efficient use of nitrogen.
Collapse
Affiliation(s)
- Jonaliza L. Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Mathurada Ruangsiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Wasin Poncheewin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Decha Songtoasesakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (M.R.); (C.T.); (S.C.-u.); (W.P.); (D.S.); (B.T.); (V.R.)
| | - Theerayut Toojinda
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom 73140, Thailand;
| |
Collapse
|
2
|
Chen LH, Xu M, Cheng Z, Yang LT. Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa. Int J Mol Sci 2024; 25:10409. [PMID: 39408737 PMCID: PMC11476759 DOI: 10.3390/ijms251910409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 concentration. Polyphasic chlorophyll a fluorescence transient and relative fluorescence parameters (JIP test) results indicated that N deficiency increased Fo, but decreased the maximum quantum yield of primary photochemistry (Fv/Fm) and the maximum of the IPphase, implying that N-limiting condition impaired the whole photo electron transport chain from the donor side of photosystem II (PSII) to the end acceptor side of PSI in O. sativa. N deficiency enhanced the activities of the antioxidant enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase (GuPX), dehydro-ascorbate reductase (DHAR), superoxide dismutase (SOD), glutathione peroxidase (GlPX), glutathione reductase (GR), glutathione S-transferase (GST) and O-acetylserine (thiol) lyase (OASTL), and the contents of antioxidant compounds including reduced glutathione (GSH), total glutathione (GSH+GSSG) and non-protein thiol compounds in O. sativa leaves. In contrast, the enhanced activities of catalase (CAT), DHAR, GR, GST and OASTL, the enhanced ASC-GSH cycle and content of sulfur-containing compounds might provide protective roles against oxidative stress in O. sativa roots under N-limiting conditions. Quantitative real-time PCR (qRT-PCR) analysis indicated that 70% of the enzymes have a consistence between the gene expression pattern and the dynamic of enzyme activity in O. sativa leaves under different N supplies, whereas only 60% of the enzymes have a consistence in O. sativa roots. Our results suggested that the antioxidant system and sulfur metabolism take part in the response of N limiting condition in O. sativa, and this response was different between leaves and roots. Future work should focus on the responsive mechanisms underlying the metabolism of sulfur-containing compounds in O. sativa under nutrient deficient especially N-limiting conditions.
Collapse
Affiliation(s)
- Ling-Hua Chen
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Ming Xu
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Zuxin Cheng
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Mondal S, Kumar R, Mishra JS, Dass A, Kumar S, Vijay KV, Kumari M, Khan SR, Singh VK. Grain nitrogen content and productivity of rice and maize under variable doses of fertilizer nitrogen. Heliyon 2023; 9:e17321. [PMID: 37441387 PMCID: PMC10333472 DOI: 10.1016/j.heliyon.2023.e17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The rice-maize system is a dominant cropping system of south Asia and consumes a considerable amount of fertilizer. The indiscriminate use of fertilizer particularly nitrogen (N) is degrading the soil health and polluting the environment. Lower N-use efficiency is a major problem and needs to be improved for higher yield, lower cost of cultivation and better environment. The grain quality is also altered by the N-application as N is a major constituent of protein. Studies on the effect of N-application on grain N-content is still lacking. We hypothesised that optimization of N application would result in economising N dose, improving yield and NUE and improving grain quality. Under that context, a field experiment was conducted with different doses of fertilizer N for rice and maize. Fertilizer N was applied at the rate of 0, 40, 80, 120, 160, 200 and 240 kg ha-1 (N0-N240). An increase in grain yield was observed up to 80 and 160 kg ha-1 for rice and maize, respectively. The N content of grain increased with N rates and a significant increase was noted in N200 (1.42%) being at par with N240 (1.49%) but significantly higher than others by 13-32%. With an increase of each kilogram of N, the grain N content increased by 14 and 20 μg (microgram) for rice and maize, respectively. The leaf N content registered a decreasing trend with the progress of the crop growth for both rice and maize. The agronomic efficiency (AE) of N initially increased with an increase in the rate of fertilizer N followed by a decrease with higher doses of N. Unlike the AE, the partial factor productivity (PFP) of N decreased gradually with an increase in the rate of fertilizer N. The chlorophyll content of flag leaves also registered an increasing trend with an increasing rate of fertilizer N. On the surface soil (0-15 cm), the treatments which received lower (N0, N40) and higher (N240) fertilizer N recorded a comparatively higher total soil N than other treatments. The mean NUE was 0.42 and 0.75 for rice and maize, respectively. The study suggests an economic fertilizer N rate of 165 and 167 kg N ha-1, for rice and maize, respectively. It also concludes that the grain N content can be altered by N-application rates though more research is needed.
Collapse
Affiliation(s)
- Surajit Mondal
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Rakesh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Janki Sharan Mishra
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Anchal Dass
- Division of Agronomy, ICAR Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Sanjeev Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Kumar Varun Vijay
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Manisha Kumari
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Sana Raza Khan
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| | - Vinod Kumar Singh
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna 800 014, Bihar, India
| |
Collapse
|
4
|
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life (Basel) 2022; 12:1653. [PMID: 36295087 PMCID: PMC9605605 DOI: 10.3390/life12101653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N) is an important nutrient for the growth and development of rice. The application of N fertilizer has become one of the inevitable ways to increase rice yield due to insufficient soil N content. However, in order to achieve stable and high yield, farmers usually increase N fertilizer input without hesitation, resulting in a series of problems such as environmental pollution, energy waste and low production efficiency. For sustainable agriculture, improving the nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance, and yield components in rice. Furthermore, we further summarize the current agronomic practices for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally, we discuss the recent advances of N efficiency-related genes with potential breeding value. These genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and advanced cultivation techniques to realize the maximum exploitation of their biological potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Genyou Zhou
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Shiyang Guo
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| | - Xiaohui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiaqi Yuan
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Anyong Hu
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Xi M, Wu W, Xu Y, Zhou Y, Chen G, Ji Y, Sun X. Grain chalkiness traits is affected by the synthesis and dynamic accumulation of the storage protein in rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6125-6133. [PMID: 33905122 DOI: 10.1002/jsfa.11269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/28/2021] [Accepted: 04/27/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUOND Grain chalkiness lowers the market value of rice. Alleviating grain chalkiness is the most challenging issue in many rice-producing areas of the world. Nitrogen (N) metabolism has received increasing attention as a result of its relationship with grain chalkiness, although little information is available on the mechanism of N-induced grain chalk. RESULTS A highly chalky rice variety OM052 was used to explore the protein synthesis and its accumulation in the grain exposed to N topdressing (N+) at the panicle initiation stage and a control (N-). The results showed that chalky kernels were stimulated by the N+ treatment and more prone to occur on the top and primary rachis. The grain protein content was increased because of the increased average and maximum rates of protein accumulation during grain filling, which was related to the enhanced activities of glutamine synthetase, glutamate synthase, glutamic oxalo-acetic transaminase and glutamate pyruvate transaminase under the N+ treatment. The activities of these enzymes at 15 days after flowering (DAF) were notably positively correlated with grain chalky traits and protein content. CONCLUSION N topdressing regulates the synthesis and accumulation of the protein by affecting the key enzymes, especially at 15 DAF, which is attributed to grain chalkiness in rice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Xi
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Youzun Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yongjin Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gang Chen
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yalan Ji
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xueyuan Sun
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
6
|
The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry. LAND 2021. [DOI: 10.3390/land10080840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhizosphere is a hot spot of soil microbial activity and is largely fed by root exudation. The carbon (C) exudation flux, coupled with plant growth, is considered a strategy of plants to facilitate nutrient uptake. C exudation is accompanied by a release of nutrients. Nitrogen (N) and phosphorus (P) co-limit the productivity of the plant-microbial system. Therefore, the C:N:P stoichiometry of exudates should be linked to plant nutrient economies, plant functional traits (PFT) and soil nutrient availability. We aimed to identify the strongest links in C:N:P stoichiometry among all rhizosphere components. A total of eight grass species (from conservative to exploitative) were grown in pots under two different soil C:nutrient conditions for a month. As a result, a wide gradient of plant–microbial–soil interactions were created. A total of 43 variables of plants, exudates, microbial and soil C:N:P stoichiometry, and PFTs were evaluated. The variables were merged into four groups in a network analysis, allowing us to identify the strongest connections among the variables and the biological meaning of these groups. The plant–soil interactions were shaped by soil N availability. Faster-growing plants were associated with lower amounts of mineral N (and P) in the soil solution, inducing a stronger competition for N with microorganisms in the rhizosphere compared to slower-growing plants. The plants responded by enhancing their N use efficiency and root:shoot ratio, and they reduced N losses via exudation. Root growth was supported either by reallocated foliar reserves or by enhanced ammonium uptake, which connected the specific leaf area (SLA) to the mineral N availability in the soil. Rapid plant growth enhanced the exudation flux. The exudates were rich in C and P relative to N compounds and served to release surplus metabolic products. The exudate C:N:P stoichiometry and soil N availability combined to shape the microbial stoichiometry, and N and P mining. In conclusion, the exudate flux and its C:N:P stoichiometry reflected the plant growth rate and nutrient constraints with a high degree of reliability. Furthermore, it mediated the plant–microbial interactions in the rhizosphere.
Collapse
|
7
|
Teixeira LS, Pimenta TM, Brito FAL, Malheiros RSP, Arruda RS, Araújo WL, Ribeiro DM. Selenium uptake and grain nutritional quality are affected by nitrogen fertilization in rice (Oryza sativa L.). PLANT CELL REPORTS 2021; 40:871-880. [PMID: 33772600 DOI: 10.1007/s00299-021-02685-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The effects of selenium in rice grain composition depend on the soil nitrogen supply. Selenium and nitrogen have the potential to modify rice grain composition; however, it is unclear how the combined effect of Se and nitrogen affects the grain nutritional quality of rice. In our study, grain Se concentration was positively associated with the increased availability of nitrogen in soil. The accumulation of Se in grain of rice plants treated with Se combined with nitrogen was accompanied by an increase in expression of NRT1.1B, a rice nitrate transporter and sensor, in root. Moreover, Se potentiates the response of nitrogen supply in expression of sulfate transporter OsSULTR1.2, phosphate transporter OsPT2 and silicon transporter OsNIP2.1 in root, thereby increasing root Se uptake capacity. The combination of Se with high nitrogen increased the concentrations of protein, carbohydrates, Se, Mo and Mg, but decreased concentrations of Fe, Mn, Cu and Zn in grain. Overall, our results revealed that many of the effects of Se in rice grain composition are due to a shift in the nitrogen status of the plant.
Collapse
Affiliation(s)
- Lubia S Teixeira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Rafael S P Malheiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Rafaela S Arruda
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil.
| |
Collapse
|
8
|
Gao J, Liu L, Ma N, Yang J, Dong Z, Zhang J, Zhang J, Cai M. Effect of ammonia stress on carbon metabolism in tolerant aquatic plant-Myriophyllum aquaticum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114412. [PMID: 32217380 DOI: 10.1016/j.envpol.2020.114412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, the tips of Myriophyllum aquaticum (M. aquaticum) plants were planted in open-top plastic bins and treated by simulated wastewater with various ammonium-N concentrations for three weeks. The contents of related carbohydrates and key enzyme activities of carbon metabolism were measured, and the mechanisms of carbon metabolism regulation of the ammonia tolerant plant M. aquaticum under different ammonium-N levels were investigated. The decrease in total nonstructural carbohydrates, soluble sugars, sucrose, fructose, reducing sugar and starch content of M. aquaticum were induced after treatment with ammonium-N during the entire stress process. This finding showed that M. aquaticum consumed a lot of carbohydrates to provide energy during the detoxification process of ammonia nitrogen. Moreover, ammonia-N treatment led to the increase in the activitives of invertase (INV) and sucrose synthase (SS), which contributed to breaking down more sucrose to provide substance and energy for plant cells. Meanwhile, the sucrose phosphate synthase (SPS) activity was also enhanced under stress of high concentrations of ammonium-N, especially on day 21. The result indicated that under high-concentration ammonium-N stress, SPS activity can be significantly stimulated by regulating carbon metabolism of M. aquaticum, thereby accumulating sucrose in the plant body. Taken together, M. aquaticum can regulate the transformation of related carbohydrates in vivo by highly efficient expression of INV, SPS and SS, and effectively regulate the osmotic potential, thereby delaying the toxicity of ammonia nitrogen and improving the resistance to stress. It is very important to study carbon metabolism under ammonia stress to understand the ammonia nitrogen tolerance mechanism of M. aquaticum.
Collapse
Affiliation(s)
- Jingqing Gao
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, PR China.
| | - Lina Liu
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Na Ma
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiao Yang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zekun Dong
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingshen Zhang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, PR China
| | - Jinliang Zhang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, PR China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, PR China
| |
Collapse
|
9
|
Deng F, Wang L, Mei XF, Li SX, Pu SL, Li QP, Ren WJ. Polyaspartic acid (PASP)-urea and optimised nitrogen management increase the grain nitrogen concentration of rice. Sci Rep 2019; 9:313. [PMID: 30670728 PMCID: PMC6342930 DOI: 10.1038/s41598-018-36371-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Increase in grain nitrogen concentration (GNC), which is directly affected by nitrogen (N) application, can help overcome the issues of malnutrition. Here, the effects of urea type (polyaspartic acid (PASP) urea and conventional urea) and N management method (two splits and four splits) on GNC and N concentration of head rice were investigated in field experiments conducted in Sichuan, China, in 2014 and 2015. N concentration of grain and head rice were significantly (P < 0.05) increased by N redistribution from the leaf lamina, activities of glutamine synthetase (GS), and glutamate synthase (GOGAT) at the heading stage, and N concentration and GOGAT activity in the leaf lamina at the maturity stage. Compared to conventional urea, PASP-urea significantly improved N concentration of grain and head rice by improving the activities of GS and GOGAT, thereby increasing N distribution in the leaf lamina. The four splits method, unlike the two splits method, enhanced N concentration and activities of key N metabolism enzymes of leaf lamina, leading to increased GNC and N concentration in head rice too. Overall, four splits is a feasible method for using PASP-urea and improving GNC.
Collapse
Affiliation(s)
- Fei Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Institute for New Rural Development, Sichuan Agricultural University, Ya'an, China
| | - Li Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Student Affairs, Sichuan Agricultural University, Ya'an, China
| | - Xiu-Feng Mei
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Shu-Xian Li
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Shi-Lin Pu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Qiu-Ping Li
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Wan-Jun Ren
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|