1
|
Nedios S, Iliodromitis K, Kowalewski C, Bollmann A, Hindricks G, Dagres N, Bogossian H. Big Data in electrophysiology. Herzschrittmacherther Elektrophysiol 2022; 33:26-33. [PMID: 35137276 DOI: 10.1007/s00399-022-00837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with a granularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine.
Collapse
Affiliation(s)
- Sotirios Nedios
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany.
- Rhythmologie, Herzzentrum Leipzig, Universität Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Konstantinos Iliodromitis
- Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen, Germany
- Department of Cardiology, University Witten/Herdecke, Witten, Germany
| | - Christopher Kowalewski
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Harilaos Bogossian
- Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen, Germany
- Department of Cardiology, University Witten/Herdecke, Witten, Germany
| |
Collapse
|
2
|
de Groot NMS, Shah D, Boyle PM, Anter E, Clifford GD, Deisenhofer I, Deneke T, van Dessel P, Doessel O, Dilaveris P, Heinzel FR, Kapa S, Lambiase PD, Lumens J, Platonov PG, Ngarmukos T, Martinez JP, Sanchez AO, Takahashi Y, Valdigem BP, van der Veen AJ, Vernooy K, Casado-Arroyo Co-Chair R. Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology. Europace 2021; 24:313-330. [PMID: 34878119 DOI: 10.1093/europace/euab254] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.
Collapse
Affiliation(s)
- Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Delft University of Technology, Delft the Netherlands
| | - Dipen Shah
- Cardiology Service, University Hospitals Geneva, Geneva, Switzerland
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Elad Anter
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich and Technical University of Munich, Munich, Germany
| | - Thomas Deneke
- Department of Cardiology, Rhon-klinikum Campus Bad Neustadt, Germany
| | - Pascal van Dessel
- Department of Cardiology, Medisch Spectrum Twente, Twente, the Netherlands
| | - Olaf Doessel
- Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Polychronis Dilaveris
- 1st University Department of Cardiology, National & Kapodistrian University of Athens School of Medicine, Hippokration Hospital, Athens, Greece
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Suraj Kapa
- Department of Cardiology, Mayo Clinic, Rochester, USA
| | | | - Joost Lumens
- Cardiovascular Research Institute Maastricht (CARIM) Maastricht University, Maastricht, the Netherlands
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Tachapong Ngarmukos
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juan Pablo Martinez
- Aragon Institute of Engineering Research/IIS-Aragon and University of Zaragoza, Zaragoza, Spain, CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Alejandro Olaya Sanchez
- Department of Cardiology, Hospital San José, Fundacion Universitaia de Ciencas de la Salud, Bogota, Colombia
| | - Yoshihide Takahashi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bruno P Valdigem
- Department of Cardiology, Hospital Rede D'or São Luiz, hospital Albert einstein and Dante pazzanese heart institute, São Paulo, Brasil
| | - Alle-Jan van der Veen
- Department Circuits and Systems, Delft University of Technology, Delft, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | |
Collapse
|
3
|
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42:3904-3916. [PMID: 34392353 PMCID: PMC8497074 DOI: 10.1093/eurheartj/ehab544] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detection of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the concept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent technological advances in all aspects of arrhythmia care.
Collapse
Affiliation(s)
- Venkat D Nagarajan
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,Department of Cardiology, Doncaster and Bassetlaw Hospitals, NHS Foundation Trust, Thorne Road, Doncaster DN2 5LT, UK
| | - Su-Lin Lee
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), UCL, Foley Street, London W1W 7TS, UK
| | - Jan-Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Christoph A Nienaber
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Charles Street, Baltimore, MD 21218, USA
| | - Sabine Ernst
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
4
|
Sánchez J, Luongo G, Nothstein M, Unger LA, Saiz J, Trenor B, Luik A, Dössel O, Loewe A. Using Machine Learning to Characterize Atrial Fibrotic Substrate From Intracardiac Signals With a Hybrid in silico and in vivo Dataset. Front Physiol 2021; 12:699291. [PMID: 34290623 PMCID: PMC8287829 DOI: 10.3389/fphys.2021.699291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 11/15/2022] Open
Abstract
In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.
Collapse
Affiliation(s)
- Jorge Sánchez
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, Valencia, Spain
| | - Giorgio Luongo
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Mark Nothstein
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Laura A. Unger
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, Valencia, Spain
| | - Armin Luik
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| |
Collapse
|
5
|
Nothstein M, Luik A, Jadidi A, Sánchez J, Unger LA, Wülfers EM, Dössel O, Seemann G, Schmitt C, Loewe A. CVAR-Seg: An Automated Signal Segmentation Pipeline for Conduction Velocity and Amplitude Restitution. Front Physiol 2021; 12:673047. [PMID: 34108887 PMCID: PMC8181407 DOI: 10.3389/fphys.2021.673047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rate-varying S1S2 stimulation protocols can be used for restitution studies to characterize atrial substrate, ionic remodeling, and atrial fibrillation risk. Clinical restitution studies with numerous patients create large amounts of these data. Thus, an automated pipeline to evaluate clinically acquired S1S2 stimulation protocol data necessitates consistent, robust, reproducible, and precise evaluation of local activation times, electrogram amplitude, and conduction velocity. Here, we present the CVAR-Seg pipeline, developed focusing on three challenges: (i) No previous knowledge of the stimulation parameters is available, thus, arbitrary protocols are supported. (ii) The pipeline remains robust under different noise conditions. (iii) The pipeline supports segmentation of atrial activities in close temporal proximity to the stimulation artifact, which is challenging due to larger amplitude and slope of the stimulus compared to the atrial activity. METHODS AND RESULTS The S1 basic cycle length was estimated by time interval detection. Stimulation time windows were segmented by detecting synchronous peaks in different channels surpassing an amplitude threshold and identifying time intervals between detected stimuli. Elimination of the stimulation artifact by a matched filter allowed detection of local activation times in temporal proximity. A non-linear signal energy operator was used to segment periods of atrial activity. Geodesic and Euclidean inter electrode distances allowed approximation of conduction velocity. The automatic segmentation performance of the CVAR-Seg pipeline was evaluated on 37 synthetic datasets with decreasing signal-to-noise ratios. Noise was modeled by reconstructing the frequency spectrum of clinical noise. The pipeline retained a median local activation time error below a single sample (1 ms) for signal-to-noise ratios as low as 0 dB representing a high clinical noise level. As a proof of concept, the pipeline was tested on a CARTO case of a paroxysmal atrial fibrillation patient and yielded plausible restitution curves for conduction speed and amplitude. CONCLUSION The proposed openly available CVAR-Seg pipeline promises fast, fully automated, robust, and accurate evaluations of atrial signals even with low signal-to-noise ratios. This is achieved by solving the proximity problem of stimulation and atrial activity to enable standardized evaluation without introducing human bias for large data sets.
Collapse
Affiliation(s)
- Mark Nothstein
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Armin Luik
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Amir Jadidi
- Klinik für Kardiologie und Angiologie II, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jorge Sánchez
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Laura A. Unger
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eike M. Wülfers
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gunnar Seemann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Claus Schmitt
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
6
|
Abstract
Artificial intelligence through machine learning (ML) methods is becoming prevalent throughout the world, with increasing adoption in healthcare. Improvements in technology have allowed early applications of machine learning to assist physician efficiency and diagnostic accuracy. In electrophysiology, ML has applications for use in every stage of patient care. However, its use is still in infancy. This article will introduce the potential of ML, before discussing the concept of big data and its pitfalls. The authors review some common ML methods including supervised and unsupervised learning, then examine applications in cardiac electrophysiology. This will focus on surface electrocardiography, intracardiac mapping and cardiac implantable electronic devices. Finally, the article concludes with an overview of how ML may impact on electrophysiology in the future.
Collapse
|
7
|
Orozco-Duque A, Tobón C, Ugarte JP, Morillo C, Bustamante J. Electroanatomical mapping based on discrimination of electrograms clusters for localization of critical sites in atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 141:37-46. [DOI: 10.1016/j.pbiomolbio.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/07/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
|
8
|
Oesterlein TG, Loewe A, Lenis G, Luik A, Schmitt C, Dossel O. Automatic Identification of Reentry Mechanisms and Critical Sites During Atrial Tachycardia by Analyzing Areas of Activity. IEEE Trans Biomed Eng 2018; 65:2334-2344. [DOI: 10.1109/tbme.2018.2794321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Feature subset selection and classification of intracardiac electrograms during atrial fibrillation. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Oesterlein T, Kramlich A, Lenis G, Luik A, Schmitt C, Dössel O. Automatic detection and mapping of double potentials in intracardiac electrograms. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2016. [DOI: 10.1515/cdbme-2016-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Catheter ablation has become a very efficient strategy to terminate sustained cardiac arrhythmias like atrial flutter (AFlut). Identification of the optimal ablation spot, however, often proves difficult when scar from previous ablations is present. Although the application of electro-anatomical mapping systems allows to record thousands of intracardiac electrograms (EGMs) from each atrium, state-of-the-art techniques provide limited options for automatic signal processing. Goal of the presented research was the development of an algorithm to detect EGMs that present double potentials (DPs), as these often indicate functional or anatomical lines of block for cardiac excitation. Using an annotated database, we developed several features based on the morphological descriptors of DPs. These were used to train a binary decision tree which was able to detect DPs with a correct rate of over 90%.
Collapse
Affiliation(s)
- Tobias Oesterlein
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology, Germany
| | - Alexander Kramlich
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology, Germany
| | - Gustavo Lenis
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology, Germany
| | - Armin Luik
- Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Olaf Dössel
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology, Germany
| |
Collapse
|
11
|
Orozco-Duque A, Bustamante J, Castellanos-Dominguez G. Semi-supervised clustering of fractionated electrograms for electroanatomical atrial mapping. Biomed Eng Online 2016; 15:44. [PMID: 27117088 PMCID: PMC4845510 DOI: 10.1186/s12938-016-0154-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrogram-guided ablation procedures have been proposed as an alternative strategy consisting of either mapping and ablating focal sources or targeting complex fractionated electrograms in atrial fibrillation (AF). However, the incomplete understanding of the mechanism of AF makes difficult the decision of detecting the target sites. To date, feature extraction from electrograms is carried out mostly based on the time-domain morphology analysis and non-linear features. However, their combination has been reported to achieve better performance. Besides, most of the inferring approaches applied for identifying the levels of fractionation are supervised, which lack of an objective description of fractionation. This aspect complicates their application on EGM-guided ablation procedures. METHODS This work proposes a semi-supervised clustering method of four levels of fractionation. In particular, we make use of the spectral clustering that groups a set of widely used features extracted from atrial electrograms. We also introduce a new atrial-deflection-based feature to quantify the fractionated activity. Further, based on the sequential forward selection, we find the optimal subset that provides the highest performance in terms of the cluster validation. The method is tested on external validation of a labeled database. The generalization ability of the proposed training approach is tested to aid semi-supervised learning on unlabeled dataset associated with anatomical information recorded from three patients. RESULTS A joint set of four extracted features, based on two time-domain morphology analysis and two non-linear dynamics, are selected. To discriminate between four considered levels of fractionation, validation on a labeled database performs a suitable accuracy (77.6 %). Results show a congruence value of internal validation index among tested patients that is enough to reconstruct the patterns over the atria to located critical sites with the benefit of avoiding previous manual classification of AF types. CONCLUSIONS To the best knowledge of the authors, this is the first work reporting semi-supervised clustering for distinguishing patterns in fractionated electrograms. The proposed methodology provides high performance for the detection of unknown patterns associated with critical EGM morphologies. Particularly, obtained results of semi-supervised training show the advantage of demanding fewer labeled data and less training time without significantly compromising accuracy. This paper introduces a new method, providing an objective scheme that enables electro-physiologist to recognize the diverse EGM morphologies reliably.
Collapse
Affiliation(s)
- Andres Orozco-Duque
- Bioengineering Center, Universidad Pontificia Bolivariana, Medellin, Colombia. .,GI2B, Instituto Tecnologico Metropolitano, Medellin, Colombia.
| | - John Bustamante
- Bioengineering Center, Universidad Pontificia Bolivariana, Medellin, Colombia
| | | |
Collapse
|
12
|
Oesterlein TG, Schmid J, Bauer S, Jadidi A, Schmitt C, Dössel O, Luik A. Analysis and visualization of intracardiac electrograms in diagnosis and research: Concept and application of KaPAVIE. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 127:165-173. [PMID: 26774236 DOI: 10.1016/j.cmpb.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. METHODS A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. RESULTS The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. CONCLUSION KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation.
Collapse
Affiliation(s)
- Tobias Georg Oesterlein
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jochen Schmid
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Silvio Bauer
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Amir Jadidi
- Universitäts-Herzzentrum Freiburg-Bad Krozingen, Germany.
| | | | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Armin Luik
- Städtisches Klinikum Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
13
|
Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. ENTROPY 2015. [DOI: 10.3390/e17117493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Orozco-Duque A, Novak D, Kremen V, Bustamante J. Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiol Meas 2015; 36:2269-84. [DOI: 10.1088/0967-3334/36/11/2269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Bauer S, Oesterlein T, Schmidt J, Dössel O. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2015. [DOI: 10.1515/cdbme-2015-0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractState of the art biomedical engineering allows for acquiring enormous amounts of intracardiac data to aid diagnosis and treatment of cardiac arrhythmias. Modern catheters, which are used to acquire electrical information from within the heart, are capable of recording up to 64 channels simultaneously. The software available for data analysis, however, does not provide adequate performance to neither analyze nor visualize the acquired information in an appropriate manner. We present a software package that fascilitates interdisciplinary collaborations between engineers and physicians to adress open questions about pathophysiological mechanisms using data from everyday electrophysiogical studies. Therefore, a package has been compiled that enables algorithm development using MATLAB and subsequent visualization using the VTK C++ class libraries. The resulting application KaPAVIE, which is presented in this paper, is designed to meet the requirements from the clinical side and has been successfully applied in the clinical environment.
Collapse
Affiliation(s)
- Silvio Bauer
- 1Karlsruhe Institute of Biomedical Engineering (IBT), address of first
| | - Tobias Oesterlein
- 2Karlsruhe Institute of Biomedical Engineering (IBT), address of second author and third author
| | - Jochen Schmidt
- 2Karlsruhe Institute of Biomedical Engineering (IBT), address of second author and third author
| | - Olaf Dössel
- 2Karlsruhe Institute of Biomedical Engineering (IBT), address of second author and third author
| |
Collapse
|