1
|
Sameni HR, Arab S, Doostmohammadi N, Bahraminasab M. Effect of calcium phosphate/bovine serum albumin coated Al 2O 3-Ti biocomposites on osteoblast response. BIOMED ENG-BIOMED TE 2024; 69:367-382. [PMID: 38258440 DOI: 10.1515/bmt-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVES The biological performance of aluminum oxide-titanium (Al2O3-Ti) composites requires special attention to achieve improved osteoblastic differentiation, and subsequent osseointegration/strong anchorage with the surrounding bone. Therefore, the aim of this study was to improve them by providing calcium phosphate (Ca-P)/bovine serum albumin (BSA) coating on their surfaces. METHODS Ca-P/BSA coatings were prepared on the surfaces of 75vol.%Ti composites (75Ti-BSA) and pure Ti (100Ti-BSA as a control). The surface characteristics, phase analysis, micro-hardness, BSA release profile and biological responses including cytotoxicity, cell viability, differentiation, mineralization, and cell adhesion were evaluated. RESULTS The results showed that lower cytotoxicity% and higher mitochondrial activity or viability % were associated with the samples with Ca-P/BSA coatings (particularly 75Ti-BSA having 21.3% cytotoxicity, 111.4% and 288.6% viability at day 1 and 7, respectively). Furthermore, the Ca-P/BSA coating could highly enhance the differentiation of pre-osteoblast cells into osteoblasts in 75Ti-BSA group (ALP concentration of 4.8 ng/ml). However, its influence on cell differentiation in 100Ti-BSA group was negligible. Similar results were also obtained from mineralization assay. The results on cell adhesion revealed that the Ca-P/BSA coated samples differently interacted with MC3T3-E1 cells; enlarged flat cells on 75Ti-BSA vs more spindle-shaped cells on 100Ti-BSA. CONCLUSIONS Ca-P/BSA coated Al2O3-Ti provided promising biological performance, superior to that of uncoated composites. Therefore, they have the potential to improve implant osseointegration.
Collapse
Affiliation(s)
- Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nesa Doostmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Wei J, Chen X, Xu Y, Shi L, Zhang M, Nie M, Liu X. Significance and considerations of establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon 2024; 10:e33768. [PMID: 39071581 PMCID: PMC11283167 DOI: 10.1016/j.heliyon.2024.e33768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Establishing animal models with critical size defects (CSDs) is critical for conducting experimental investigations engineering of bone tissue regeneration. Currently, a standardised protocol for establishing an animal CSDs model has not been developed. Furthermore, a consensus has not been reached regarding the critical values of CSDs. Successful establishment of animal models for CSDs is a complex process that requires researchers to meticulously consider a variety of factors such as age, species, bone defect size and anatomic location. The specific numerical values for CSDs in small animal models vary, and a clear definition of the critical value for large animal CSDs models in the literature is still lacking. This review consolidates the advancements in critical bone defects animal models by outlining the research landscape across variables, including animal species, age groups, bone defect sites, and sizes, to offer valuable guidance and a theoretical framework for the establishment of pertinent experimental animal models.
Collapse
Affiliation(s)
- Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xiao Chen
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Yingjiao Xu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Menglian Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Basic Medicine of Stomatology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| |
Collapse
|
3
|
Mitić D, Čarkić J, Jaćimović J, Lazarević M, Jakšić Karišik M, Toljić B, Milašin J. The Impact of Nano-Hydroxyapatite Scaffold Enrichment on Bone Regeneration In Vivo-A Systematic Review. Biomimetics (Basel) 2024; 9:386. [PMID: 39056827 PMCID: PMC11274561 DOI: 10.3390/biomimetics9070386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES In order to ensure improved and accelerated bone regeneration, nano-hydroxyapatite scaffolds are often enriched with different bioactive components to further accelerate and improve bone healing. In this review, we critically examined whether the enrichment of nHAp/polymer scaffolds with growth factors, hormones, polypeptides, microRNAs and exosomes improved new bone formation in vivo. MATERIALS AND METHODS Out of 2989 articles obtained from the literature search, 106 papers were read in full, and only 12 articles met the inclusion criteria for this review. RESULTS Several bioactive components were reported to stimulate accelerated bone regeneration in a variety of bone defect models, showing better results than bone grafting with nHAp scaffolds alone. CONCLUSIONS The results indicated that composite materials based on nHAp are excellent candidates as bone substitutes, while nHAp scaffold enrichment further accelerates bone regeneration. The standardization of animal models should be provided in order to clearly define the most significant parameters of in vivo studies. Only in this way can the adequate comparison of findings from different in vivo studies be possible, further advancing our knowledge on bone regeneration and enabling its translation to clinical settings.
Collapse
Affiliation(s)
- Dijana Mitić
- School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.Č.); (J.J.); (M.L.); (M.J.K.); (B.T.); (J.M.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Yan B, Hua Y, Wang J, Shao T, Wang S, Gao X, Gao J. Surface Modification Progress for PLGA-Based Cell Scaffolds. Polymers (Basel) 2024; 16:165. [PMID: 38201830 PMCID: PMC10780542 DOI: 10.3390/polym16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Poly(lactic-glycolic acid) (PLGA) is a biocompatible bio-scaffold material, but its own hydrophobic and electrically neutral surface limits its application as a cell scaffold. Polymer materials, mimics ECM materials, and organic material have often been used as coating materials for PLGA cell scaffolds to improve the poor cell adhesion of PLGA and enhance tissue adaptation. These coating materials can be modified on the PLGA surface via simple physical or chemical methods, and coating multiple materials can simultaneously confer different functions to the PLGA scaffold; not only does this ensure stronger cell adhesion but it also modulates cell behavior and function. This approach to coating could facilitate the production of more PLGA-based cell scaffolds. This review focuses on the PLGA surface-modified materials, methods, and applications, and will provide guidance for PLGA surface modification.
Collapse
Affiliation(s)
- Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China;
| | - Jinyue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Tianjiao Shao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| |
Collapse
|
5
|
Alonso-Fernández I, Haugen HJ, López-Peña M, González-Cantalapiedra A, Muñoz F. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Acta Biomater 2023; 168:1-21. [PMID: 37454707 DOI: 10.1016/j.actbio.2023.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
3D-printed composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. The aim of the study was to systematically review the feasibility of using PLA/bioceramic composite scaffolds manufactured by 3D-printing technologies as bone grafting materials in preclinical in vivo studies. Electronic databases were searched using specific search terms, and thirteen manuscripts were selected after screening. The synthesis of the scaffolds was carried out using mainly extrusion-based techniques. Likewise, hydroxyapatite was the most used bioceramic for synthesizing composites with a PLA matrix. Among the selected studies, seven were conducted in rats and six in rabbits, but the high variability that exists regarding the experimental process made it difficult to compare them. Regarding the results, PLA/Bioceramic composite scaffolds have shown to be biocompatible and mechanically resistant. Preclinical studies elucidated the ability of the scaffolds to be used as bone grafts, allowing bone growing without adverse reactions. In conclusion, PLA/Bioceramics scaffolds have been demonstrated to be a promising alternative for treating bone defects. Nevertheless, more care should be taken when designing and performing in vivo trials, since the lack of standardization of the processes, which prevents the comparison of the results and reduces the quality of the information. STATEMENT OF SIGNIFICANCE: 3D-printed polylactic acid/bioceramic composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. Since preclinical in vivo studies with animal models represent a mandatory step for clinical translation, the present manuscript analyzed and discussed not only those aspects related to the selection of the bioceramic material, the synthesis of the implants and their characterization. But provides a new approach to understand how the design and perform of clinical trials, as well as the selection of the analysis methods, may affect the obtained results, by covering authors' knowledgebase from veterinary medicine to biomaterial science. Thus, this study aims to systematically review the feasibility of using polylactic acid/bioceramic scaffolds as grafting materials in preclinical trials.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| |
Collapse
|
6
|
Vukovic M, Lazarevic M, Mitic D, Karisik MJ, Ilic B, Andric M, Jevtic B, Roganovic J, Milasin J. Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro. Arch Oral Biol 2022; 144:105564. [DOI: 10.1016/j.archoralbio.2022.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
|
7
|
Vujović S, Desnica J, Stanišić D, Ognjanović I, Stevanovic M, Rosic G. Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review. Molecules 2022; 27:molecules27175529. [PMID: 36080296 PMCID: PMC9457564 DOI: 10.3390/molecules27175529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Reconstruction of defects in the maxillofacial region following traumatic injuries, craniofacial deformities, defects from tumor removal, or infections in the maxillofacial area represents a major challenge for surgeons. Various materials have been studied for the reconstruction of defects in the maxillofacial area. Biodegradable metals have been widely researched due to their excellent biological properties. Magnesium (Mg) and Mg-based materials have been extensively studied for tissue regeneration procedures due to biodegradability, mechanical characteristics, osteogenic capacity, biocompatibility, and antibacterial properties. The aim of this review was to analyze and discuss the applications of Mg and Mg-based materials in reconstructive oral and maxillofacial surgery in the fields of guided bone regeneration, dental implantology, fixation of facial bone fractures and soft tissue regeneration.
Collapse
Affiliation(s)
- Sanja Vujović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanišić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| |
Collapse
|
8
|
Stevanovic M, Selakovic D, Vasovic M, Ljujic B, Zivanovic S, Papic M, Zivanovic M, Milivojevic N, Mijovic M, Tabakovic SZ, Jokanovic V, Arnaut A, Milanovic P, Jovicic N, Rosic G. Comparison of Hydroxyapatite/Poly(lactide-co-glycolide) and Hydroxyapatite/Polyethyleneimine Composite Scaffolds in Bone Regeneration of Swine Mandibular Critical Size Defects: In Vivo Study. Molecules 2022; 27:1694. [PMID: 35268796 PMCID: PMC8911599 DOI: 10.3390/molecules27051694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Reconstruction of jaw bone defects present a significant problem because of specific aesthetic and functional requirements. Although widely used, the transplantation of standard autograft and allograft materials is still associated with significant constraints. Composite scaffolds, combining advantages of biodegradable polymers with bioceramics, have potential to overcome limitations of standard grafts. Polyethyleneimine could be an interesting novel biocompatible polymer for scaffold construction due to its biocompatibility and chemical structure. To date, there have been no in vivo studies assessing biological properties of hydroxyapatite bioceramics scaffold modified with polyethyleneimine. The aim of this study was to evaluate in vivo effects of composite scaffolds of hydroxyapatite ceramics and poly(lactide-co-glycolide) and novel polyethyleneimine on bone repair in swine's mandibular defects, and to compare them to conventional bone allograft (BioOss). Scaffolds were prepared using the method of polymer foam template in three steps. Pigs, 3 months old, were used and defects were made in the canine, premolar, and molar area of their mandibles. Four months following the surgical procedure, the bone was analyzed using radiological, histological, and gene expression techniques. Hydroxyapatite ceramics/polyethyleneimine composite scaffold demonstrated improved biological behavior compared to conventional allograft in treatment of swine's mandibular defects, in terms of bone density and bone tissue histological characteristics.
Collapse
Affiliation(s)
- Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
- Department of Maxillofacial Surgery, Medical Faculty Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.S.); (G.R.)
| | - Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Nevena Milivojevic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Milica Mijovic
- Institute of Pathology, Faculty of Medicine, University in Priština, 38220 Kosovska Mitrovica, Serbia;
| | - Sasa Z. Tabakovic
- Department of Maxillofacial Surgery, Medical Faculty Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Vukoman Jokanovic
- Department of Atomic Physics, Vinca Institute of Nuclear Sciences, 11000 Belgrade, Serbia;
| | - Aleksandra Arnaut
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.S.); (G.R.)
| |
Collapse
|
9
|
Animal models in bicompatibility assessments of implants in soft and hard tissues. VETERINARSKI GLASNIK 2021. [DOI: 10.2298/vetgl210322005p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The ethical dilemmas of using animals as in vivo models in preclinical and
clinical examinations have been increasingly present in recent decades.
Small laboratory animals (rats, rabbits) will continue to be used because
they are cost-effective and permit the formation of statistically testable
cohort groups; a task that, for financial, maintenance and care reasons, is
almost prohibitive for larger animals. Technological advances in the
production of new biomaterials for clinical use are enormous, but screening
tests and methods used to assess biocompatibility lag behind these advances.
The assessment of biological responses is slow and based on millennial
recovery mechanisms in eukaryotic organisms. Therefore, the goal of
researchers in this field is to re-evaluate old methods of biocompatibility
assessment and introduce new methods of evaluation, especially for in vivo
testing. In that sense, a revision of the ISO standards was planned and
conducted in 2017, which insisted on cytotoxicity testing in cell lines and
produced concrete proposals on how biocompatibility should be quantified. In
vivo biocompatibility evaluation of biomaterials used for soft tissue
recovery commonly utilises rats. Rabbits are recommended for implants used
for hard tissues, because of the rabbit?s size, the possibility of
implanting the biomaterials on a larger bone surface, and because of the
peculiarities of rabbit bone tissue that favours rapid recovery after bone
defects and enables easy reading of the results.
Collapse
|