1
|
Kunisch E, Fiehn LA, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the biological properties of the 45S5-, 1393-, and 0106-B1-bioactive glass compositions using human bone marrow-derived stromal cells and a rodent critical size femoral defect model. BIOMATERIALS ADVANCES 2023; 153:213521. [PMID: 37356285 DOI: 10.1016/j.bioadv.2023.213521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.
Collapse
Affiliation(s)
- Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; Joint Replacement Centre, Orthopaedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, 70176 Stuttgart, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
2
|
Novel Techniques and Future Perspective for Investigating Critical-Size Bone Defects. Bioengineering (Basel) 2022; 9:bioengineering9040171. [PMID: 35447731 PMCID: PMC9027954 DOI: 10.3390/bioengineering9040171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023] Open
Abstract
A critical-size bone defect is a challenging clinical problem in which a gap between bone ends will not heal and will become a nonunion. The current treatment is to harvest and transplant an autologous bone graft to facilitate bone bridging. To develop less invasive but equally effective treatment options, one needs to first have a comprehensive understanding of the bone healing process. Therefore, it is imperative to leverage the most advanced technologies to elucidate the fundamental concepts of the bone healing process and develop innovative therapeutic strategies to bridge the nonunion gap. In this review, we first discuss the current animal models to study critical-size bone defects. Then, we focus on four novel analytic techniques and discuss their strengths and limitations. These four technologies are mass cytometry (CyTOF) for enhanced cellular analysis, imaging mass cytometry (IMC) for enhanced tissue special imaging, single-cell RNA sequencing (scRNA-seq) for detailed transcriptome analysis, and Luminex assays for comprehensive protein secretome analysis. With this new understanding of the healing of critical-size bone defects, novel methods of diagnosis and treatment will emerge.
Collapse
|
3
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
4
|
Godino Izquierdo M. Osteogenic in vitro training of bone marrow mesenquimal cells for application in segmentary bone resections. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020. [DOI: 10.1016/j.recote.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Godino Izquierdo M. Osteogenic in vitro training of bone marrow mesenquimal cells for application in segmentary bone resections. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020; 64:236-243. [PMID: 32473814 DOI: 10.1016/j.recot.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/18/2020] [Accepted: 04/09/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To achieve bone continuity in an experimental model of segmental resection of femur bone by applying a treatment with committed to osteogenic bone linage mesenchymal stem cells. MATERIAL AND METHOD Bone marrow mesenchymal stem cells, obtained from syngeneic Wistar murine, were committed into osteogenic lineage and embedded within a hydroxipatite block. They were implanted in an experimentally created diaphyseal femur resection model. The diaphysis was synthetized with a 1.5mm thick plate. In order to calculate binomial distributions, we stablished one experimental and 3 control groups of 8 elements each: Group I, filling the gap with allograft; group ii, filling with a hydroxyapatite block without cells; group iii, filling with the hydroxyapatite block embedded with committed cells, and group iv, with the hydroxyapatite embedded with osteoinduced cells in a 3 dimensions TRAP culture. Descriptive analysis was performed by frequency distribution and Fisher statistic test. Level of statistical significance was considered at P<.05. RESULTS Group I presented good bone consolidation and no plate breakage. Group II showed fibrous but non-bone tissue, with rupture of all plates. Group III showed bone tissue in all cases, but the plates broke in all of them, while in group iv bone consolidation was achieve without any plate rupture. CONCLUSION Cell therapy with mesenchymal stem cells, trained in a 3 dimensions cell culture, produces bone tissue and ensures the permanence of the mechanical stabilization performed in a segmental resection model. LIMITATIONS A study with a larger sample size is necessary before planning the human inference.
Collapse
Affiliation(s)
- M Godino Izquierdo
- Servicio de Traumatología y Ortopedia, Hospital Costa del Sol, Marbella, Málaga, España.
| |
Collapse
|
6
|
Binsalah MA, Ramalingam S, Alkindi M, Nooh N, Al-Hezaimi K. Guided Bone Regeneration of Femoral Segmental Defects using Equine Bone Graft: An In-Vivo Micro-Computed Tomographic Study in Rats. J INVEST SURG 2018; 32:456-466. [DOI: 10.1080/08941939.2018.1441343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mohammed Awadh Binsalah
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alkindi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Nasser Nooh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-Hezaimi
- American Board of Periodontology & Endodontics, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Lang A, Schulz A, Ellinghaus A, Schmidt-Bleek K. Osteotomy models - the current status on pain scoring and management in small rodents. Lab Anim 2018; 50:433-441. [PMID: 27909193 DOI: 10.1177/0023677216675007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fracture healing is a complex regeneration process which produces new bone tissue without scar formation. However, fracture healing disorders occur in approximately 10% of human patients and cause severe pain and reduced quality of life. Recently, the development of more standardized, sophisticated and commercially available osteosynthesis techniques reflecting clinical approaches has increased the use of small rodents such as rats and mice in bone healing research dramatically. Nevertheless, there is no standard for pain assessment, especially in these species, and consequently limited information regarding the welfare aspects of osteotomy models. Moreover, the selection of analgesics is restricted for osteotomy models since non-steroidal anti-inflammatory drugs (NSAIDs) are known to affect the initial, inflammatory phase of bone healing. Therefore, opioids such as buprenorphine and tramadol are often used. However, dosage data in the literature are varied. Within this review, we clarify the background of osteotomy models, explain the current status and challenges of animal welfare assessment, and provide an example score sheet including model specific parameters. Furthermore, we summarize current refinement options and present a brief outlook on further 3R research.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany .,Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.,German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Anja Schulz
- German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
8
|
Wang MO, Bracagalia L, Thompson JA, Fisher JP. Hydroxyapatite-doped alginate beads as scaffolds for the osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2016; 104:2325-33. [PMID: 27129735 PMCID: PMC12062972 DOI: 10.1002/jbm.a.35768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
Abstract
This work investigates the role of an osteoblastic matrix component, hydroxyapatite (HA), in modular alginate scaffolds to support osteoblastic differentiation of human mesenchymal stem cells for the purpose of tissue engineered bone constructs. This system is first evaluated in a tubular perfusion bioreactor, which has been shown to improve osteoblastic differentiation over static culture conditions. HMSCs in alginate scaffolds that contain HA show increased osteoblastic gene expression compared to cells in pure alginate scaffolds, as well as significantly more matrix production and mineralization. The differentiated hMSCs and cell-laid matrix are ultimately evaluated in an in vivo site specific model. Implantation of these scaffolds with preformed matrix into the rat femoral condyle defects results in abundant bone growth and significant incorporation of the scaffold into the surrounding tissue. The developed mineralized matrix, induced in part by the HA component in the scaffold, could lead to increased tissue development in critically sized defects, and should be included in future implant strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2325-2333, 2016.
Collapse
Affiliation(s)
- Martha O. Wang
- University of Maryland, Fischell Department of Bioengineering, 3240 Jeong H. Kim Engineering Building, College Park, MD 20742
| | - Laura Bracagalia
- University of Maryland, Fischell Department of Bioengineering, 3240 Jeong H. Kim Engineering Building, College Park, MD 20742
| | - Joshua A. Thompson
- University of Maryland, Fischell Department of Bioengineering, 3240 Jeong H. Kim Engineering Building, College Park, MD 20742
| | - John P. Fisher
- University of Maryland, Fischell Department of Bioengineering, 3240 Jeong H. Kim Engineering Building, College Park, MD 20742
| |
Collapse
|
9
|
Comparison of Effects of Pulsed Electromagnetic Field Stimulation on Platelet-Rich Plasma and Bone Marrow Stromal Stem Cell Using Rat Zygomatic Bone Defect Model. Ann Plast Surg 2016; 75:565-71. [PMID: 26461101 DOI: 10.1097/sap.0000000000000160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reconstruction of bone defects that occur because of certain reasons has an important place in plastic and reconstructive surgery. The objective of the treatments of these defects was to reinstate the continuity of tissues placed in the area in which the defect has occurred. In this experimental study, the effect of pulsed electromagnetic field stimulation on platelet-rich plasma (PRP) and bone marrow stromal cell, which propounded that they have positive impact on bone regeneration, was evaluated with the bone healing rate in the zygomatic bone defect model enwrapped with superficial temporal fascia. METHODS After creating a 4-mm defect on the zygomatic bone of the experiments, the defect was encompassed with a superficial temporal fascial flap and a nonunion model was created. After surgery, different combinations of the PRP, bone marrow stromal cell, and electromagnetic field applications were implemented on the defective area. All the experiments were subjected to bone density measurement. RESULTS The result revealed that the PRP and pulsed electromagnetic field implementation were rather a beneficial and an effective combination in terms of bone regeneration. CONCLUSIONS It was observed that the superficial temporal fascial flap used in the experiment was a good scaffold choice, providing an ideal bone regeneration area because of its autogenous, vascular, and 3-dimensional structures. As a result, it is presumed that this combination in the nonhealing bone defects is a rather useful treatment choice and can be used in a reliable way in clinical applications.
Collapse
|
10
|
Mataliotakis GI, Tsouknidas A, Panteliou S, Vekris MD, Mitsionis GI, Agathopoulos S, Beris AE. A new, low cost, locking plate for the long-term fixation of a critical size bone defect in the ratfemur: in vivo performance, biomechanical and finite element analysis. Biomed Mater Eng 2015; 25:335-46. [PMID: 26407196 DOI: 10.3233/bme-151540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The optimum fixation device for the critical size bone defect is not established yet. OBJECTIVE A reliable, feasible and low-cost fixation device for the long-term maintenance of a critical bone defect. METHODS A custom-made plate made of poly-methyl-methacrylate was used for the fixation of a critical defect of rats' femurs. The screws were securely fixing both on the plate and the bone. A three point bending test, aimed to resemble the in vivo loading pattern, a Finite Element Analysis and a 24-week in vivo monitoring of the integrity of the plate fixation were utilized. RESULTS The plate has linear and reproducible behavior. It presents no discontinuities in the stress field of the fixation. Its properties are attributed to the material and the locking principle. It fails beyond the level of magnitude of the normal ambulatory loads. In vivo, 100% of the plates maintained the bone defect intact up to 12 weeks and 85% of them at 24 weeks. CONCLUSION This novel locking plate shows optimal biomechanical performance and reliability with high long-term in vivo survival rate. It is fully implantable, inexpensive and easily manufactured. It can be qualified for long term critical defect fixation in bone regeneration studies.
Collapse
Affiliation(s)
| | - Alexander Tsouknidas
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Panteliou
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Marios D Vekris
- Department of Orthopaedic Surgery, University of Ioannina, Ioannina, Greece
| | | | - Simeon Agathopoulos
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Alexander E Beris
- Department of Orthopaedic Surgery, University of Ioannina, Ioannina, Greece
| |
Collapse
|
11
|
Glatt V, Matthys R. Adjustable stiffness, external fixator for the rat femur osteotomy and segmental bone defect models. J Vis Exp 2014:e51558. [PMID: 25350129 DOI: 10.3791/51558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Collapse
Affiliation(s)
- Vaida Glatt
- Institute of Health and Biomedical Innovation, Queensland University of Technology;
| | | |
Collapse
|
12
|
A Standardized Critical Size Defect Model in Normal and Osteoporotic Rats to Evaluate Bone Tissue Engineered Constructs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:348635. [PMID: 24738053 PMCID: PMC3967594 DOI: 10.1155/2014/348635] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/01/2014] [Accepted: 02/01/2014] [Indexed: 11/17/2022]
Abstract
Tissue engineered constructs should be tested for their efficacy not only in normal but also in osteoporotic bone. The rat is an established animal model for osteoporosis and is used often for bone healing studies. In this study a defined and standardized critical size defect model in the rat suitable for screening new tissue engineered constructs in normal and osteoporotic bone is described and validated. Normal and ovariectomised Wistar rats received a unilateral middiaphyseal 5 mm defect in the femur, which was instrumented with a radiolucent PEEK plate fixed with angular stable titanium screws and left untreated. All animals were euthanized eight weeks after defect surgery and the bone healing was evaluated using radiographs, computed tomography measurements, and histology. The developed fixation system provided good stability, even in osteoporotic bone. The implants and ancillary instruments ensured consistent and facile placement of the PEEK plates. The untreated defects did not heal without intervention making the model a well-defined and standardized critical size defect model highly useful for evaluating tissue engineered solutions in normal and osteoporotic bone.
Collapse
|
13
|
Foo T, Reagan J, Watson JT, Moed BR, Zhang Z. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration. J Tissue Eng 2013; 4:2041731413486368. [PMID: 23593535 PMCID: PMC3627200 DOI: 10.1177/2041731413486368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.
Collapse
Affiliation(s)
- Terasa Foo
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
14
|
Montijo HE, Kellam JF, Gettys FK, Starman JS, Nelson MAJKJ, Bayoumi EM, Bosse MJ, Gruber HE. Utilization of the AO LockingRatNail in a Novel Rat Femur Critical Defect Model. J INVEST SURG 2012; 25:381-6. [DOI: 10.3109/08941939.2012.655370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Skaliczki G, Weszl M, Schandl K, Major T, Kovács M, Skaliczki J, Redl H, Szendrői M, Szigeti K, Máté D, Dobó-Nagy C, Lacza Z. Compromised bone healing following spacer removal in a rat femoral defect model. ACTA ACUST UNITED AC 2012; 99:223-32. [DOI: 10.1556/aphysiol.99.2012.2.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Prediction of spatio-temporal bone formation in scaffold by diffusion equation. Biomaterials 2011; 32:7006-12. [DOI: 10.1016/j.biomaterials.2011.05.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/28/2011] [Indexed: 11/20/2022]
|
17
|
Srouji S, Ben-David D, Kohler T, Müller R, Zussman E, Livne E. A model for tissue engineering applications: femoral critical size defect in immunodeficient mice. Tissue Eng Part C Methods 2011; 17:597-606. [PMID: 21254818 DOI: 10.1089/ten.tec.2010.0501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal models for preclinical functionality assays lie midway between in vitro systems such as cell culture and actual clinical trials. We have developed a novel external fixation device for femoral critical size defect (CSD) in the femurs of immunodeficient mice as an experimental model for studying bone regeneration and bone tissue engineering. The external fixation device comprises four pointed rods and dental acrylic paste. A segmental bone defect (2 mm) was created in the midshaft of the mouse femur. The CSD in the femur of the mice were either left untreated or treated with a bone allograft, a cell-scaffold construct, or a scaffold-only construct. The repair and healing processes of the CSD were monitored by digital x-ray radiography, microcomputed tomography, and histology. Repair of the femoral CSD was achieved with the bone allografts, and partial repair of the femoral CSD was achieved with the cell scaffold and the scaffold-only constructs. No repair of the nongrafted femoral CSD was observed. Our results establish the feasibility of this new mouse femoral model for CSD repair of segmental bone using a simple stabilized external fixation device. The model should prove especially useful for in vivo preclinical proof-of-concept studies that involve cell therapy-based technologies for bone tissue engineering applications in humans.
Collapse
Affiliation(s)
- Samer Srouji
- Department of Oral and Maxillofacial Surgery, Carmel Medical Center, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
18
|
Wingerter S, Calvert G, Tucci M, Tsao A, Russell G, Benghuzzi H. Comparison of Two Different Fixation Techniques for a Segmental Defect in a Rat Femur Model. J INVEST SURG 2009; 20:149-55. [PMID: 17613689 DOI: 10.1080/08941930701364732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Studies have attempted to identify the osteogenic effects of bone morphogenetic proteins using a rat femur model, which commonly involves the creation of a critical size defect followed by internal fixation of the femur. Among the most familiar fixation methods are either plating or intramedullary placement of a Kirschner wire (K-wire). There are advantages and disadvantages to each method; however, this study attempts to identify the best method by exploring the histological effects of each technique. The experiment involved two groups with no added treatment: Group P (plate fixation method) and Group K (K-wire fixation method). The animals were allowed a 4-week interval for the femurs to heal, and proximal, distal, and two midshaft cuts were examined under high-power microscopy after the fixation apparatus was removed. Group K exhibited a peculiar fibrotic healing pattern that followed the shaft of the then vacated K-wire and there was minimal new viable bone formation. Group P, however, exhibited a more natural ingrowth of newly formed bone that began at the proximal and distal cuts and proceeded centrally into the core of the defect. Due to the fibrotic tissue in Group K, this study shows that the model is insufficient due to the micromotion created and thus supports plating of critical defects as the fixation method of choice due to the creation of a stable healing environment.
Collapse
Affiliation(s)
- Scott Wingerter
- Department of Orthopaedic Surgery and Rehabilitation, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | |
Collapse
|
19
|
Willie B, Adkins K, Zheng X, Simon U, Claes L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res 2009; 27:687-93. [PMID: 18985701 DOI: 10.1002/jor.20792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clinical and experimental studies have shown that several mechanical factors influence the fracture healing process. One such factor, interfragmentary movement, is affected by loading and the stiffness of the fixation device. This study evaluated the stiffness of different external fixation devices for a rat femoral fracture model, using in vitro and analytical methods. The contribution to the stiffness of the fixation construct was dominated by the flexibility of the pins in relation to their offset, diameter, and material properties. The axial stiffness increased with decreasing offset and increasing pin diameter. Titanium pins resulted in significantly lower axial stiffness compared to stainless steel pins of the same design. The fixator body material and fixator length had a less pronounced influence on fixation stiffness. Mechanically characterized external fixation devices will allow in vivo study of the fracture healing process utilizing pre-calculated fracture fixation stiffness. These characterized fixation devices will allow controlled manipulation of the axial and shear interfragmentary movement to achieve a flexible fixation resulting in callus formation compared to a more rigid fixation limiting callus formation in a rat femoral fracture model.
Collapse
Affiliation(s)
- Bettina Willie
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
20
|
Zhao Z, Yang D, Ma X, Zhao H, Nie C, Si Z. Successful Repair of a Critical-Sized Bone Defect in the Rat Femur with a Newly Developed External Fixator. TOHOKU J EXP MED 2009; 219:115-20. [DOI: 10.1620/tjem.219.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhenyu Zhao
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University
| | - Daping Yang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University
| | - Xu Ma
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University
| | - Hongmei Zhao
- Department of Gynecology, the Third Affiliated Hospital of Harbin Medical University
| | - Chunlei Nie
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University
| | - Zhenxing Si
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
21
|
Drosse I, Volkmer E, Seitz S, Seitz H, Penzkofer R, Zahn K, Matis U, Mutschler W, Augat P, Schieker M. Validation of a Femoral Critical Size Defect Model for Orthotopic Evaluation of Bone Healing: A Biomechanical, Veterinary and Trauma Surgical Perspective. Tissue Eng Part C Methods 2008; 14:79-88. [DOI: 10.1089/tec.2007.0234] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Inga Drosse
- Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich, Munich, Germany
| | - Elias Volkmer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich, Munich, Germany
- Department of Trauma Surgery, University of Munich, Munich, Germany
| | - Sebastian Seitz
- Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich, Munich, Germany
- Center for Biomechanics, Experimental Trauma Surgery and Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Seitz
- Department of Fluid Technology and Microfluidics University of Rostock, Rostock, Germany
| | | | - Klaus Zahn
- Clinic of Veterinary Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Ulrike Matis
- Clinic of Veterinary Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wolf Mutschler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich, Munich, Germany
- Department of Trauma Surgery, University of Munich, Munich, Germany
| | | | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich, Munich, Germany
- Department of Trauma Surgery, University of Munich, Munich, Germany
| |
Collapse
|
22
|
Kaspar K, Schell H, Toben D, Matziolis G, Bail HJ. An easily reproducible and biomechanically standardized model to investigate bone healing in rats, using external fixation / Ein leicht reproduzierbares und biomechanisch standardisiertes Modell zur Untersuchung der Knochenheilung in der Ratte unter Verwendung eines Fixateur Externe. BIOMED ENG-BIOMED TE 2007; 52:383-90. [DOI: 10.1515/bmt.2007.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Jäger M, Degistirici O, Knipper A, Fischer J, Sager M, Krauspe R. Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation. J Bone Miner Res 2007; 22:1224-33. [PMID: 17451370 DOI: 10.1359/jbmr.070414] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Stem cell and tissue engineering-based therapies have become a promising option to heal bony defects in the future. Human cord blood-derived mesenchymal stem cells were seeded onto a collagen/tricalcium phosphate scaffold and xenotransplanted into critical size femoral defects of 46 nude rats. We found a survival of human cells within the scaffold and surrounding bone/bone marrow up to 4 wk after transplantation and an increased bone healing rate compared with controls without stem cells. This study supports the application of cord blood stem cells for bone regeneration. INTRODUCTION The treatment of critical size bone defects is still a challenging problem in orthopedics. In this study, the survival, migration, and bone healing promoting potency of cord blood-derived stem cells were elucidated after xenotransplantation into a critical size femoral defect in athymic nude rats. MATERIALS AND METHODS Unrestricted somatic stem cells (USSCs) isolated from human cord blood were tested toward their mesenchymal in vitro potency and cultivated onto a collagen I/III and beta-tricalcium phosphate (beta-TCP) scaffold. The biomaterial-USSC composite was transplanted into a 4-mm femoral defect of 40 nude rats and stabilized by an external fixator. Twelve animals without USSCs served as controls. Cell survival, migration, and bone formation were evaluated by blood samples, X-rays, and histological and immunocytochemical analysis of different organs within a maximal postoperative follow-up of 10 wk. RESULTS Of the 52 nude rats, 46 animals were evaluated (drop-out rate: 11.5%). Human-derived stem cells showed an engraftment within the scaffold and adjacent femur up to 4 wk after xenotransplantation. With further time, the human cells were destroyed by the host organism. We found a significant increase in bone formation in the study group compared with controls. USSC transplantation did not significantly influence blood count or body weight in athymic nude rats. Whereas the collagen I/III scaffold was almost resorbed 10 wk after transplantation, there were still significant amounts of TCP present in transplantation sites at this time. CONCLUSIONS Human cord blood-derived stem cells showed significant engraftment in bone marrow, survived within a collagen-TCP scaffold up to 4 wk, and increased local bone formation in a nude rat's femoral defect.
Collapse
Affiliation(s)
- Marcus Jäger
- Research Laboratory for Regenerative Medicine and Biomaterials, Department of Orthopaedics, Heinrich-Heine University Medical School, Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|