1
|
Yang J, Ouedraogo SY, Wang J, Li Z, Feng X, Ye Z, Zheng S, Li N, Zhan X. Clinically relevant stratification of lung squamous carcinoma patients based on ubiquitinated proteasome genes for 3P medical approach. EPMA J 2024; 15:67-97. [PMID: 38463626 PMCID: PMC10923771 DOI: 10.1007/s13167-024-00352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Relevance The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome's regulatory function is closely associated with the disease's pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan-Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters. Results This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin-proteasome system for degradation. Conclusions Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00352-w.
Collapse
Affiliation(s)
- Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Zhijun Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Xiaoxia Feng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
- School of Basic Medicine, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China
| | - Shu Zheng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| |
Collapse
|
2
|
Begolli G, Marković I, Knežević J, Debeljak Ž. Carbohydrate sulfotransferases: a review of emerging diagnostic and prognostic applications. Biochem Med (Zagreb) 2023; 33:030503. [PMID: 37545696 PMCID: PMC10373059 DOI: 10.11613/bm.2023.030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Carbohydrate sulfotransferases (CHST) catalyse the biosynthesis of proteoglycans that enable physical interactions and signalling between different neighbouring cells in physiological and pathological states. The study aim was to provide an overview of emerging diagnostic and prognostic applications of CHST. PubMed database search was conducted using the keywords "carbohydrate sulfotransferase" together with appropriate inclusion and exclusion criteria, whereby 41 publications were selected. Additionally, 40 records on CHST genetic and biochemical properties were hand-picked from UniProt, GeneCards, InterPro, and neXtProt databases. Carbohydrate sulfotransferases have been applied mainly in diagnostics of connective tissue disorders, cancer and inflammations. The lack of CHST activity was found in congenital connective tissue disorders while CHST overexpression was detected in different malignancies. Mutations of CHST3 gene cause skeletal dysplasia, chondrodysplasia, and autosomal recessive multiple joint dislocations while increased tissue expression of CHST11, CHST12 and CHST15 is an unfavourable prognostic factor in ovarian cancer, glioblastoma and pancreatic cancer, respectively. Recently, CHST11 and CHST15 overexpression in the vascular smooth muscle cells was linked to the severe lung pathology in COVID-19 patients. Promising CHST diagnostic and prognostic applications have been described but larger clinical studies and robust analytical procedures are required for the more reliable diagnostic performance estimations.
Collapse
Affiliation(s)
- Gramos Begolli
- Clinic of medical biochemistry, University clinical center of Kosovo, Prishtina, Kosovo
| | - Ivana Marković
- Clinical institute of laboratory diagnostics, University hospital centre Osijek, Osijek, Croatia
- Faculty of medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Jelena Knežević
- Laboratory for advanced genomics, Ruđer Bošković Institute, Zagreb, Croatia
- Faculty for dental medicine and health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical institute of laboratory diagnostics, University hospital centre Osijek, Osijek, Croatia
- Faculty of medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
3
|
Melichar B. Biomarkers in the management of lung cancer: changing the practice of thoracic oncology. Clin Chem Lab Med 2022; 61:906-920. [PMID: 36384005 DOI: 10.1515/cclm-2022-1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Lung cancer currently represents a leading cause of cancer death. Substantial progress achieved in the medical therapy of lung cancer during the last decade has been associated with the advent of targeted therapy, including immunotherapy. The targeted therapy has gradually shifted from drugs suppressing general mechanisms of tumor growth and progression to agents aiming at transforming mechanisms like driver mutations in a particular tumor. Knowledge of the molecular characteristics of a tumor has become an essential component of the more targeted therapeutic approach. There are specific challenges for biomarker determination in lung cancer, in particular a commonly limited size of tumor sample. Liquid biopsy is therefore of particular importance in the management of lung cancer. Laboratory medicine is an indispensable part of multidisciplinary management of lung cancer. Clinical
Chemistry and Laboratory Medicine (CCLM) has played and will continue playing a major role in updating and spreading the knowledge in the field.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology , Palacký University Medical School and Teaching Hospital , Olomouc , Czech Republic
- Department of Oncology and Radiotherapy and Fourth Department of Medicine , Charles University Medical School and Teaching Hospital , Hradec Králové , Czech Republic
| |
Collapse
|
4
|
CHST7 Methylation Status Related to the Proliferation and Differentiation of Pituitary Adenomas. Cells 2022; 11:cells11152400. [PMID: 35954244 PMCID: PMC9368070 DOI: 10.3390/cells11152400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary adenomas (PAs) are the second most common primary brain tumor and may develop from any of the cell lineages responsible for producing the different pituitary hormones. DNA methylation is one of the essential epigenetic mechanisms in cancers, including PAs. In this study, we measured the expression profile and promoter methylation status of carbohydrate sulfotransferase 7 (CHST7) in patients with PA; then, we investigated the effect of the CHST7 methylation status on the proliferation and differentiation of PAs. The volcano map and Metascape results showed that the levels of CHST7 were related to the lineages’ differentiation and the cell adhesion of PAs, and patients with low CHST7 had greater chances of having an SF-1 lineage (p = 0.002) and optic chiasm compression (p = 0.007). Reactome pathway analysis revealed that most of the DEGs involved in the regulation of TP53 regulated the transcription of cell cycle genes (HSA-6791312 and HSA6804116) in patients with high CHST7. Correlation analysis showed that CHST7 was significantly correlated with the eIF2/ATF4 pathway and mitochondrion-related genes. The AUC of ROC showed that CHST7 (0.288; 95% CI: 0.187–0.388) was superior to SF-1 (0.555; 95% CI: 0.440–0.671) and inferior to FSHB (0.804; 95% CI: 0.704–0.903) in forecasting the SF-1 lineage (p < 0.001). The SF-1 lineage showed a higher methylation frequency for CHST7 than the Pit-1 and TBX19 lineages (p = 0.009). Furthermore, as the key molecule of the hypothalamic–pituitary–gonadal axis, inhibin βE (INHBE) was positively correlated with the levels of CHST7 (r = 0.685, p < 0.001). In summary, CHST7 is a novel pituitary gland specific protein in SF-1 lineage adenomas with a potential role in gonadotroph cell proliferation and lineage differentiation in PAs.
Collapse
|
5
|
Long non-coding RNA ZNF674-AS1 antagonizes oxaliplatin resistance of gastric cancer via regulating EZH2-mediated methylation of CHST7. Aging (Albany NY) 2022; 14:5523-5536. [PMID: 35802620 PMCID: PMC9320539 DOI: 10.18632/aging.204165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Chemoresistance leads the cause of poor outcome of patients with gastric cancer (GC). Long non-coding RNAs (LncRNAs) is intimately involved in the regulation of tumorigenesis and progression. Here, we demonstrated ZNF674-AS1 was down-regulated in oxaliplatin (OXA)-resistant tissues and cell lines, lower level of ZNF674-AS1 predicted poor prognosis of GC patients. Besides, forced expression of ZNF674-AS1 not only reduced cell viability, colony formation, expression of drug-resistant markers but also promoted cell apoptosis of OXA-resistant GC cells, exposed to oxaliplatin. Silence of ZNF674-AS1 exhibited an opposite effects on OXA resistance of GC cells. Further mechanistic research showed that ZNF674-AS1 interacted with EZH2, led to higher methylation level of target gene CHST7. In addition, functional experiments verified that depletion of CHST7 re-sensitized OXA-resistant GC cells to OXA. Thus, our results indicated that ZNF674-AS1 suppressed OXA resistance of GC through EZH2-mediated inhibition of CHST7, providing potential theoretic basis and therapeutic strategy for chemoresistant GC.
Collapse
|
6
|
Exploring the sulfate patterns of chondroitin sulfate/dermatan sulfate and keratan sulfate in human pancreatic cancer. J Pharm Biomed Anal 2021; 205:114339. [PMID: 34464868 DOI: 10.1016/j.jpba.2021.114339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
This study was designed to explore the sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), and keratan sulfate (KS) and the expression of carbohydrate sulfotransferases (CHSTs) in 26 pancreatic tumor and normal tissues. CS/DS and KS profiles were simultaneously determined. Pancreatic tumor tissues exhibited increased ΔDi-0S, ΔDi-4S, and ΔDi-6S levels, with absolute ΔDi-4S content being highest, followed by ΔDi-6S. However, as for the contents of KS-6S and KS-6S,6'S, there were no significant regular change. The expression levels of CHST1 and CHST4 were 37 and 15 times higher than those in normal tissues. PCA and OPLS-DA revealed that ΔDi-4S and ΔDi-6S levels could be reliably used to differentiate between healthy and cancerous tissues. The up-regulation of CHST3, CHST12, CHST13, and CHST15 was directly correlated with C-4 and C-6 sulfation. These data provide a foundation for future studies of the role of ΔDi-4S and ΔDi-6S in the progression of pancreatic cancer.
Collapse
|
7
|
Wang J, Xia X, Tao X, Zhao P, Deng C. Knockdown of carbohydrate sulfotransferase 12 decreases the proliferation and mobility of glioblastoma cells via the WNT/β-catenin pathway. Bioengineered 2021; 12:3934-3946. [PMID: 34288811 PMCID: PMC8806823 DOI: 10.1080/21655979.2021.1944455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is a common malignant tumor of the brain. Members of the carbohydrate sulfotransferase (CHST) family are deregulated in various cancer types. However, limited data are available on the role of the members of the CHST family in the development of GBM. The present study aimed to identify the role of significant members of the CHST family in GBM and explore the effects and molecular mechanisms of these significant members on GBM cell proliferation and mobility. In the current study, we demonstrated that CHST12 is the only member of CHST family that is upregulated in GBM tissues and associated with a lower survival rate according to the data obtained from The Cancer Genome Atlas. Similarly, the expression of CHST12 increased in GBM tissues than in adjacent tissues and had an important diagnostic value in distinguishing tumor tissues from adjacent tissues. The high expression of CHST12 indicated a lower overall survival rate, was negatively associated with the Karnofsky Performance Scale score, was positively associated with the KI67 expression rate, and was an independent risk factor for GBM. Knockdown of CHST12 significantly decreased GBM cell proliferation and mobility and inhibited the Wnt/β-catenin pathway. Restoration of β-catenin expression in GBM cells reversed the inhibitory effects of CHST12 knockdown on GBM cell proliferation and mobility. In conclusion, the present study demonstrated that CHST12 may be a novel biomarker for GBM; it regulates GBM cell proliferation and mobility via the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| | - Xiaoning Xia
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| | - Xiuqin Tao
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| | - Pingping Zhao
- Department of Oncology, Changle People's Hospital, Weifang Shandong, China
| | - Chuanyu Deng
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| |
Collapse
|
8
|
ZHAO M, ZHAN Q. Rehabilitation treatment of enteral nutrition whey protein in lung cancer patients in southern China. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.22620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Qingqing ZHAN
- Taizhou Vocational College of Science and Technology, China
| |
Collapse
|
9
|
Bi H, Liu Y, Pu R, Xia T, Sun H, Huang H, Zhang L, Zhang Y, Liu Y, Xu J, Rong J, Zhao Y. CHST7 Gene Methylation and Sex-Specific Effects on Colorectal Cancer Risk. Dig Dis Sci 2019; 64:2158-2166. [PMID: 30815821 DOI: 10.1007/s10620-019-05530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND X chromosome aberrations are involved in carcinogenesis and are associated with gender differences in cancer development. Abnormal DNA methylation also contributes to cancer. Carbohydrate Sulfotransferase 7 (CHST7), encoded by the X chromosome, is abnormally expressed during tumor development. However, its impact on colorectal cancer (CRC) and the effect of CHST7 methylation on sex-specific CRC risk remain unclear. AIMS To investigate the effect of CHST7 methylation in white blood cells on CRC risk and to evaluate its impact on gender-specific differences. METHODS CHST7 methylation in white blood cells was determined using methylation-sensitive high-resolution melting. A propensity score analysis was performed to control potential confounders. Furthermore, extensive sensitivity analyses were applied to assess the robustness of our findings. In addition, we validated the initial findings with a GEO dataset (GSE51032). RESULTS CHST7 hypermethylation in white blood cells was associated with an increased CRC risk [odds ratio (OR)adj = 4.447, 95% confidence interval (CI) 2.662-7.430; p < 0.001]. The association was validated with the GEO dataset (ORadj = 2.802, 95% CI 1.235-6.360; p = 0.014). In particular, CHST7 hypermethylation significantly increased the CRC risk in females (ORadj = 7.704, 95% CI 4.222-14.058; p < 0.001) and younger patients (≤ 60 years) (ORadj = 5.755, 95% CI 2.540-13.038; p < 0.001). Subgroup analyses by tumor location and Duke's stage also observed these associations. CONCLUSION CHST7 methylation in white blood cells is positively associated with CRC risk, especially in females, and may potentially serve as a blood-based predictive biomarker for CRC risk.
Collapse
Affiliation(s)
- Haoran Bi
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rui Pu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Tingting Xia
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jiesheng Rong
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, 246, Xuefu Street, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|