1
|
Lian GY, Wang QM, Mak TSK, Huang XR, Yu XQ, Lan HY. Disrupting Smad3 potentiates immunostimulatory function of NK cells against lung carcinoma by promoting GM-CSF production. Cell Mol Life Sci 2024; 81:262. [PMID: 38878186 PMCID: PMC11335298 DOI: 10.1007/s00018-024-05290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Through Smad3-dependent signalings, transforming growth factor-β (TGF-β) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-β-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-β-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.
Collapse
Affiliation(s)
- Guang-Yu Lian
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing-Ming Wang
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Park SM, Chen CJJ, Verdon DJ, Ooi MPY, Brooks AES, Martin RCW, Mathy JA, Emanuel PO, Dunbar PR. Proliferating macrophages in human tumours show characteristics of monocytes responding to myelopoietic growth factors. Front Immunol 2024; 15:1412076. [PMID: 38903497 PMCID: PMC11188303 DOI: 10.3389/fimmu.2024.1412076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Macrophages play essential roles in maintaining tissue homeostasis and immune defence. However, their extensive infiltration into tumours has been linked to adverse outcomes in multiple human cancers. Within the tumour microenvironment (TME), tumour-associated macrophages (TAMs) promote tumour growth and metastasis, making them prime targets for cancer immunotherapy. Recent single-cell analysis suggest that proliferating TAMs accumulate in human cancers, yet their origins and differentiation pathways remain uncertain. Here, we show that a subpopulation of CD163+ TAMs proliferates in situ within the TME of melanoma, lung cancer, and breast cancer. Consistent with their potential role in suppressing anti-tumour activities of T cells, CD163+ TAMs express a range of potent immunosuppressive molecules, including PD-L1, PD-L2, IL-10, and TGF-β. Other phenotypic markers strongly suggested that these cells originate from CD14+ CCR2+ monocytes, a cell population believed to have minimal capacity for proliferation. However, we demonstrate in vitro that certain myelopoietic cytokines commonly available within the TME induce robust proliferation of human monocytes, especially the combination of interleukin 3 (IL-3) and Macrophage Colony-Stimulating Factor 1 (M-CSF). Monocytic cells cultured with these cytokines efficiently modulate T cell proliferation, and their molecular phenotype recapitulates that of CD163+ TAMs. IL-3-driven proliferation of monocytic cells can be completely blocked by IL-4, associated with the induction of CDKN1A, alongside the upregulation of transcription factors linked to dendritic cell function, such as BATF3 and IRF4. Taken together, our work suggests several novel therapeutic routes to reducing immunosuppressive TAMs in human tumours, from blocking chemokine-mediated recruitment of monocytes to blocking their proliferation.
Collapse
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Chun-Jen J. Chen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Daniel J. Verdon
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Marcus P. Y. Ooi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | | | - Jon A. Mathy
- Department of Surgery, Faculty of Medical Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Regional Plastic, Reconstructive and Hand Surgery Unit, Auckland, New Zealand
| | - Patrick O. Emanuel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - P. Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
3
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
4
|
Chen Y, Zhao Z, Chen Y, Lv Z, Ding X, Wang R, Xiao H, Hou C, Shen B, Feng J, Guo R, Li Y, Peng H, Han G, Chen G. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017; 7:8265. [PMID: 28811578 PMCID: PMC5557751 DOI: 10.1038/s41598-017-08047-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
Growing evidence shows that granulocyte macrophage colony-stimulating factor (GM-CSF) has progression-promoting potentials in certain solid tumors, which is largely attributed to the immunomodulatory function of this cytokine in tumor niches. However, little is known about the effect of GM-CSF on cancer cells. Herein, we show that chronic exposure of colon cancer cells to GM-CSF, which harbor its receptor, leads to occurrence of epithelial to mesenchymal transition (EMT), in time and dose-dependent manners. These GM-CSF-educated cancer cells exhibit enhanced ability of motility in vitro and in vivo. Furthermore, GM-CSF stimulation renders colon cancer cells more resistant to cytotoxic agents. Mechanistic investigation reveals that MAPK/ERK signaling and EMT-inducing transcription factor ZEB1 are critical to mediate these effects of GM-CSF. In specimen of CRC patients, high-level expression of GM-CSF positively correlates with local metastases in lymph nodes. Moreover, the co-expression of GM-CSF and its receptors as well as phosphorylated ERK1/2 are observed. Thus, our study for the first time identifies a progression-promoting function of GM-CSF in colon cancer by inducing EMT.
Collapse
Affiliation(s)
- Yaqiong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.,College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Zhi Zhao
- Department of Pathology, Yihe Hospital, Henan University, Zhengzhou, 450000, P.R. China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P.R. China
| | - Zhonglin Lv
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Xin Ding
- Graduate School, Anhui Medical University, Hefei, 230032, P.R. China
| | - Renxi Wang
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - He Xiao
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Chunmei Hou
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Beifen Shen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Jiannan Feng
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Renfeng Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yan Li
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Hui Peng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China. .,Department of Environment and Pharmacy, Institute of Health and Environmental Medicine, Tianjin, 300050, P.R. China.
| | - Gencheng Han
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Guojiang Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| |
Collapse
|
5
|
Zheng Q, Li X, Cheng X, Cui T, Zhuo Y, Ma W, Zhao X, Zhao P, Liu X, Feng W. Granulocyte-macrophage colony-stimulating factor increases tumor growth and angiogenesis directly by promoting endothelial cell function and indirectly by enhancing the mobilization and recruitment of proangiogenic granulocytes. Tumour Biol 2017; 39:1010428317692232. [PMID: 28240048 DOI: 10.1177/1010428317692232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor has been widely used as an adjuvant therapy for cancer patients exhibiting myelosuppression induced by chemotherapy or radiotherapy. However, the effects of granulocyte-macrophage colony-stimulating factor on tumor growth, as well as its precise mechanism, are still controversial due to inconsistent evidence. This study investigated the effect of exogenous granulocyte-macrophage colony-stimulating factor on the growth of B16 melanoma, S180 sarcoma, and U14 cervical carcinoma in mice. The angiogenesis and recruitment of bone-marrow-derived cells were analyzed in tumor tissues. Interactions among granulocyte-macrophage colony-stimulating factor, bone-marrow-derived cells, and B16 tumor cells were investigated in vitro. Proangiogenic types of bone-marrow-derived cells in blood were assessed both in vivo and in vitro. The results showed that granulocyte-macrophage colony-stimulating factor markedly facilitated the growth of B16 and S180 tumors, but not U14 tumors. Granulocyte-macrophage colony-stimulating factor increased the densities of blood vessels and the number of bone-marrow-derived cells in B16 tumor tissues. The granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor cell proliferation was mediated by bone-marrow-derived cells in vitro. Meanwhile, a distinct synergistic effect on endothelial cell function between granulocyte-macrophage colony-stimulating factor and bone-marrow-derived cells was observed. After separating two types of bone-marrow-derived cells, granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor growth and angiogenesis in vivo was mediated by proangiogenic cells in granulocytes, but not monocytes, with CD11b+, vascular endothelial growth factor receptor 2, and C-X-C chemokine receptor 4 granulocytes possibly involved. These data suggest that granulocyte-macrophage colony-stimulating factor contributes to the growth and angiogenesis of certain types of tumor, and these mechanisms are probably mediated by proangiogenic cells in granulocytes. Applying granulocyte-macrophage colony-stimulating factor may attenuate the antitumor effects of chemotherapy and radiotherapy in certain types of tumor.
Collapse
Affiliation(s)
- Qiaowei Zheng
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xueqian Li
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Cheng
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting Cui
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, China
| | - Yingcheng Zhuo
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Wenbin Ma
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xue Zhao
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Peipei Zhao
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xuanlin Liu
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Weiyi Feng
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016; 48:e242. [PMID: 27364892 PMCID: PMC4973317 DOI: 10.1038/emm.2016.64] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
7
|
Perumal D, Pillai S, Nguyen J, Schaal C, Coppola D, Chellappan SP. Nicotinic acetylcholine receptors induce c-Kit ligand/Stem Cell Factor and promote stemness in an ARRB1/ β-arrestin-1 dependent manner in NSCLC. Oncotarget 2015; 5:10486-502. [PMID: 25401222 PMCID: PMC4279388 DOI: 10.18632/oncotarget.2395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/26/2014] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. β-arrestin-1 (ARRB1), a scaffolding protein involved in the desensitization of signals arising from activated G-protein-coupled receptors (GPCRs), has been shown to play a role in invasion and proliferation of cancer cells, including nicotine-induced proliferation of human non–small cell lung cancers (NSCLCs). In this study, we identified genes that are differentially regulated by nicotine in an ARRB1/β-arrestin-1 dependent manner in NSCLC cells by microarray analysis. Among the identified genes, SCF (Stem cell factor) strongly differentiated smokers from non-smokers in the Director's Challenge Set expression data and its high expression correlated with poor prognosis. SCF, a major cytokine is the ligand for the c-Kit proto-oncogene and was found to be over expressed in human lung adenocarcinomas, but not squamous cell carcinomas. Data presented here show that transcription factor E2F1 can induce SCF expression at the transcriptional level and depletion of E2F1 or ARRB1/β-arrestin-1 could not promote self-renewal of SP cells. These studies suggest that nicotine might be promoting NSCLC growth and metastasis by inducing the secretion of SCF, and raise the possibility that targeting signalling cascades that activate E2F1 might be an effective way to combat NSCLC.
Collapse
Affiliation(s)
- Deepak Perumal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA. Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
8
|
Cui YH, Suh Y, Lee HJ, Yoo KC, Uddin N, Jeong YJ, Lee JS, Hwang SG, Nam SY, Kim MJ, Lee SJ. Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor. Oncogene 2015; 34:5372-82. [PMID: 25639867 DOI: 10.1038/onc.2014.466] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/24/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Despite ionizing radiation (IR) is being widely used as a standard treatment for lung cancer, many evidences suggest that IR paradoxically promotes cancer malignancy. However, its molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that exposure to fractionated radiation (2 Gy per day for 3 days) induces the secretion of granulocyte-colony-stimulating factor (G-CSF) that has been commonly used in cancer therapies to ameliorate neutropenia. Intriguingly, radiation-induced G-CSF promoted the migratory and invasive properties by triggering the epithelial-mesenchymal cell transition (EMT) in non-small-cell lung cancer cells (NSCLCs). By irradiation, G-CSF was upregulated transcriptionally by β-catenin/TCF4 complex that binds to the promoter region of G-CSF as a transcription factor. Importantly, irradiation increased the stability of β-catenin through the activation of PI3K/AKT (phosphatidylinositol 3-kinase/AKT), thereby upregulating the expression of G-CSF. Radiation-induced G-CSF is recognized by G-CSFR and transduced its intracellular signaling JAK/STAT3 (Janus kinase/signal transducers and activators of transcription), thereby triggering EMT program in NSCLCs. Taken together, our findings suggest that the application of G-CSF in cancer therapies to ameliorate neutropenia should be reconsidered owing to its effect on cancer progression, and G-CSF could be a novel therapeutic target to mitigate the harmful effect of radiotherapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Y-H Cui
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Y Suh
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - H-J Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - K-C Yoo
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - N Uddin
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Y-J Jeong
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - J-S Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, Korea
| | - S-G Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - S-Y Nam
- Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul, Korea
| | - M-J Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - S-J Lee
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
9
|
Aderhold C, Grobschmidt GM, Sauter A, Faber A, Hörmann K, Schultz JD. Interleukin 4, interleukin 6 and osteopontin-serological markers of head and neck malignancy in primary diagnostics: A pilot study. Oncol Lett 2014; 8:1112-1118. [PMID: 25120668 PMCID: PMC4114600 DOI: 10.3892/ol.2014.2312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 04/01/2014] [Indexed: 12/16/2022] Open
Abstract
The progression of head and neck squamous cell carcinoma (HNSCC) is stimulated by various angiogenic peptides and growth factors. A correlation between tumor progression and the secretion of various serological mediators in patients with malignant tumors of the head and neck is of major interest for tumor diagnostics, evaluation of the therapy response and it may predict prognosis by specifying the individual tumor biology. Established chemotherapeutic regimes for head and neck tumors usually consist of platinum-based chemotherapeutic drugs and 5-fluorouracil (5-FU). The present pilot study sought to assess the eligibility of seven serological factors as biomarkers for malignant tumors of the head and neck: Platelet-derived growth factor, vascular endothelial growth factor, epidermal growth factor receptor, osteopontin, granulocyte-colony stimulating factor, interleukin-4 (IL-4) and IL-6. The serum levels of each factor in 20 patients receiving concomitant radiochemotherapy with cisplatin or carboplatin and 5-FU with curative intent were determined prior and subsequent to chemotherapy and were compared with 40 healthy controls. Another aim of the pilot study was to investigate whether the serum of patients showed significant differences in the concentrations of the analyzed factors at the start of concomitant radiochemotherapy compared with the controls, whether those markers indicated a neoplastic process and whether concomitant radiochemotherapy with cisplatin or carboplatin and 5-FU induced significant alterations of concentration compared with pre-therapeutic levels. The included patients were histopathologically diagnosed with HNSCC and the average age was 62.3 years. The serum samples of the patients were obtained during the course of regular pre- and post-chemotherapeutic blood draws one week prior to the start of radiochemotherapy and one week following the completion of chemotherapy. The healthy controls were collected from patients of the Sleep Laboratory of the Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital (Mannheim, Germany) without clinical evidence or laboratory signs of inflammation or history of a malignant disease. The average age was 50.3 years. The serological level of each factor was ascertained by enzyme-linked immunosorbent assay in duplicate. Serum levels of IL-4, IL-6 and osteopontin were significantly increased in patients with HNSCC compared with those in chemotherapy-naive healthy controls. IL-4 and osteopontin showed no significant therapy-associated alterations. Notably, IL-6 levels significantly increased post-therapeutically. Using logistic regression with osteopontin and IL-4, an individual risk-profile for random samples was calculated. IL-4, IL-6 and osteopontin appear to be suitable indicators of the neoplastic process as they are significantly increased in HNSCC patients compared with the control group. With the exception of IL-6, whose levels were in fact increased following therapy, a significant therapy-associated alteration of these factors was missing. Therefore, these serological markers failed to predict the therapy response, but they may be valuable as a screening instrument in primary diagnostics.
Collapse
Affiliation(s)
- Christoph Aderhold
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim D-68167, Germany
| | - Guido Manuel Grobschmidt
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim D-68167, Germany
| | - Alexander Sauter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim D-68167, Germany
| | - Anne Faber
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim D-68167, Germany
| | - Karl Hörmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim D-68167, Germany
| | - Johannes David Schultz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim D-68167, Germany
| |
Collapse
|
10
|
Gutschalk CM, Yanamandra AK, Linde N, Meides A, Depner S, Mueller MM. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression. Cancer Med 2012; 2:117-29. [PMID: 23634280 PMCID: PMC3639651 DOI: 10.1002/cam4.20] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022] Open
Abstract
Granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor progression in different tumor models in an autocrine and paracrine manner. However, at the same time GM-CSF is used in cancer therapies to ameliorate neutropenia. We have previously shown in GM-CSF and G-CSF expressing or negative skin or head and neck squamous cell carcinoma that GM-CSF expression is associated with a highly angiogenic and invasive tumor phenotype. To determine the functional contribution of GM-CSF to tumor invasion, we stably transfected a GM-CSF negative colon adenocarcinoma cell line HT-29 with GM-CSF or treated the same cell line with exogenous GM-CSF. While GM-CSF overexpression and treatment reduced tumor cell proliferation and tumor growth in vitro and in vivo, respectively, it contributed to tumor progression. Together with an enhanced migratory capacity in vitro, we observed a striking increase in tumor cell invasion into the surrounding tissue concomitant with the induction of an activated tumor stroma in GM-CSF overexpressing or GM-CSF treated tumors. In a complex 3D in vitro model, enhanced GM-CSF expression was associated with a discontinued basement membrane deposition that might be mediated by the increased expression and activation of MMP-2, -9, and -26. Treatment with GM-CSF blocking antibodies reversed this effect. The increased presence and activity of these tumor cell derived proteases was confirmed in vivo. Here, expression of MMP-26 protein was predominantly located in pre- and early-invasive areas suggesting MMP-26 expression as an early event in promoting GM-CSF dependent tumor invasion.
Collapse
Affiliation(s)
- Claudia M Gutschalk
- Group of Tumor and Microenvironment, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Role of the hematopoietic cytokines SCF, IL-3, GM-CSF and M-CSF in the diagnosis of pancreatic and ampullary cancer. Int J Biol Markers 2012; 27:e186-94. [PMID: 22865301 DOI: 10.5301/jbm.2012.9348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Previous studies have demonstrated altered levels of hematopoietic cytokines in the serum of patients with different types of cancer. METHODS We measured the serum levels of the hematopoietic cytokines stem cell factor (SCF), interleukin 3 (IL-3), macrophage-colony stimulating factor (M-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF) in 40 pancreatic and ampullary cancer patients and 40 healthy volunteers, using ELISA. We also assessed the most widely used pancreatic tumor markers, carbohydrate antigen 19-9 (CA 19-9) and carcinoembryonic antigen (CEA), in both groups. We then correlated the concentrations of the cytokines' and the tumor markers in the patients' serum and we estimated their diagnostic ability by calculating diagnostic sensitivity and specificity, positive and negative predictive values and the receiver operating characteristic (ROC) curve. RESULTS The SCF and IL-3 levels were significantly lower and the M-CSF levels significantly higher in pancreatic cancer patients than in controls. There were significant positive correlations between the serum levels of CEA and M-CSF, GM-CSF and SCF, and between GM-CSF and IL-3. The area under the ROC curve and diagnostic sensitivity of M-CSF were greater than those of SCF and IL-3. The diagnostic sensitivity of the combined use of SCF and M-CSF reached 97.5%. CONCLUSION The diagnostic ability of M-CSF and SCF in pancreatic and ampullary cancer should stimulate further studies evaluating their clinical usefulness as tumor markers.
Collapse
|
12
|
Buergy D, Wenz F, Groden C, Brockmann MA. Tumor-platelet interaction in solid tumors. Int J Cancer 2012; 130:2747-60. [PMID: 22261860 DOI: 10.1002/ijc.27441] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
Elevated platelet counts in patients diagnosed with malignant tumors were first described more than 100 years ago. Today it is well known that in many types of solid tumors, thrombocytosis at the time of diagnosis is associated with shorter survival. From this well-documented clinical correlation between platelet count and prognosis of solid tumors, the following questions arise: (i) Are the increased platelet counts the reason for shortened survival as platelet-secreted cytokines might boost tumor growth and angiogenesis? (ii) Do platelets affect tumor metastasis thereby shortening survival time? or (iii) Are increased platelet counts simply an epiphenomenon of tumor growth with larger tumors resulting in higher platelet counts and shorter survival times? We address these three questions within our review of the current literature to provide a comprehensive overview of the current concepts in tumor-platelet interaction.
Collapse
Affiliation(s)
- Daniel Buergy
- Department of Anesthesiology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | |
Collapse
|
13
|
Synergistic effect of SCF and G-CSF on stem-like properties in prostate cancer cell lines. Tumour Biol 2012; 33:967-78. [PMID: 22252524 PMCID: PMC3401500 DOI: 10.1007/s13277-012-0325-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/04/2012] [Indexed: 11/16/2022] Open
Abstract
Bone marrow metastases are formed in the late phases of prostate cancer disease. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are present in the microenvironment of the bone marrow and play a vital role in cell biology therein. The present study was to investigate the influence of SCF and G-CSF on stem-like properties in prostate cancer cell lines. Upon stimulation with SCF or G-CSF, higher levels of CD117, ABCG2, and CD44 were observed in PC-3 and DU145 cells examined by flow cytometry. Simultaneously, the expressions of Oct3/4 and Nanog were upregulated. Moreover, quantitative real-time PCR verified that the increased Nanog under the stimulations was mostly derived from NANOGP8. In parallel with the increasing expressions of these proteins, higher colony and sphere formation efficiencies were seen in these cells in response to the cytokine stimulations. Furthermore, a synergistic effect of SCF and G-CSF on colony and sphere formations and ABCG2 expression was disclosed. Our results indicate a favorable bone marrow niche for prostate cancer cells where higher levels of cell stemness are maintained at least partly by the cytokines SCF and G-CSF.
Collapse
|
14
|
Chikamatsu K, Takahashi G, Sakakura K, Ferrone S, Masuyama K. Immunoregulatory properties of CD44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head Neck 2011; 33:208-15. [PMID: 20848440 DOI: 10.1002/hed.21420] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND CD44 was found as a surface marker in cancer stem cell (CSC) of squamous cell carcinoma of the head and neck (SCCHN); however, the immunologic properties of such CSCs have not yet been elucidated. METHODS The immunologic properties of CD44+ cancer stem-like cells were compared with those of CD44- cells using flow cytometry and enzyme-linked immunosorbent assay. RESULTS CD44+ cells exhibited weak HLA-A2 and class II expression. Interestingly, downregulation of transporter antigen processing (TAP)2 was found in CD44+ cells. The CD44+ cell population produced significantly higher levels of interleukin (IL)-8, granulocyte colony-stimulating factor (G-CSF), and transforming growth factor (TGF)-β than the CD44- cell population. Moreover, CD44+ cells have been shown to not only more strongly inhibit T-cell proliferation, but also to more efficiently inhibit regulatory T cells (Treg cells) and myeloid-derived suppressor cells (MDSC) as compared with CD44- cells. Additionally, CD44+ cells suppressed Th1 responses and enhanced regulatory T cell responses. CONCLUSION CSCs might have higher malignant potential with numerous escape strategies from immune attack.
Collapse
Affiliation(s)
- Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, 409-3898, Japan.
| | | | | | | | | |
Collapse
|
15
|
Freisinger E, Cramer C, Xia X, Murthy SN, Slakey DP, Chiu E, Newsome ER, Alt EU, Izadpanah R. Characterization of hematopoietic potential of mesenchymal stem cells. J Cell Physiol 2010; 225:888-97. [DOI: 10.1002/jcp.22299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Wingard JR, Elmongy M. Strategies for minimizing complications of neutropenia: Prophylactic myeloid growth factors or antibiotics. Crit Rev Oncol Hematol 2009; 72:144-54. [PMID: 19237297 DOI: 10.1016/j.critrevonc.2009.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/05/2009] [Accepted: 01/15/2009] [Indexed: 11/29/2022] Open
Affiliation(s)
- John R Wingard
- Division of Hematology/Oncology, University of Florida College of Medicine, P.O. Box 103633, 1376 Mowry Road, Gainesville, FL 32610-3633, USA.
| | | |
Collapse
|
17
|
Skivka LM, Gorbik GV, Fedorchuk OG, Pozur VV. Tumor-associated macrophages in the prospect of development of targeted anticancer. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709040094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT, Syrjänen KJ, Cunha-Filho JS. Up-regulation of VEGF, c-fms and COX-2 expression correlates with severity of cervical cancer precursor (CIN) lesions and invasive disease. Gynecol Oncol 2008; 110:445-51. [DOI: 10.1016/j.ygyno.2008.04.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 10/21/2022]
|
19
|
Gutschalk CM, Herold-Mende CC, Fusenig NE, Mueller MM. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor promote malignant growth of cells from head and neck squamous cell carcinomas in vivo. Cancer Res 2007; 66:8026-36. [PMID: 16912178 DOI: 10.1158/0008-5472.can-06-0158] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are used to ameliorate cancer therapy-induced neutropenia and mucositis. Yet, first data in head and neck squamous cell carcinoma (HNSCC) indicate an impaired long-term prognosis on G-CSF treatment, and previous studies showed a contribution of both factors to the progression of human epithelial tumors. Therefore, we investigate the role of G-CSF and GM-CSF in progression of tumor cells from human HNSCC. Both factors stimulated proliferation and migration of tumor cell lines established from patient tumors expressing G-CSF and GM-CSF and/or their receptors. Blockade of G-CSF and GM-CSF inhibited tumor cell invasion in a three-dimensional organotypic culture model. The contribution of both factors to tumor malignancy was further confirmed in nude mouse transplants in vivo. Invasive and malignant growth yielding a similar tumor phenotype as the original patient tumor was exclusively observed in G-CSF- and GM-CSF-expressing tumors and was associated with enhanced and persistent angiogenesis and enhanced inflammatory cell recruitment. Although factor-negative tumors grew somewhat faster, they were characterized by lack of invasion, reduced and transient angiogenesis, and large necrotic areas. These data provide evidence for a progression-promoting effect of G-CSF and GM-CSF in human HNSCC and suggest further detailed evaluation of their use in the therapy of these tumors.
Collapse
Affiliation(s)
- Claudia M Gutschalk
- Group of Tumour and Microenvironment, German Cancer Research Centre, Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
The diagnostic value of G-CSF measurement in the sera of colorectal cancer and adenoma patients. Clin Chim Acta 2006; 371:143-7. [PMID: 16603145 DOI: 10.1016/j.cca.2006.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 01/02/2023]
Abstract
BACKGROUND Granulocyte-colony stimulating factor (G-CSF) regulates the growth of hematopoietic progenitor cells. Cancer cells, including colorectal cancer, can produce this cytokine. The aim of this study was to compare the diagnostic value of measurement of G-CSF and classic tumor markers--carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) in the sera of colorectal cancer with adenoma patients and to determine its usefulness in the diagnosis of colorectal cancer and polyps. PATIENTS AND METHODS The serum levels of G-CSF and tumor markers were assayed in 76 colorectal cancer, 35 colorectal adenoma patients and in 65 healthy subjects. We defined the diagnostic sensitivity, specificity and areas under ROC curves for the measurands. RESULTS Median values of G-CSF and tumor markers were significantly higher in colorectal cancer patients than those in healthy subjects. There were significant differences in the serum levels of G-CSF between adenoma patients and healthy subjects. The concentrations of tumor markers in colorectal cancer patients were higher than those in polyps. Combined use of G-CSF with CEA improved their diagnostic sensitivity in colorectal cancer. CONCLUSIONS Measurement of G-CSF might be useful in the diagnosis of colorectal cancer patients, but not in the differentiation between colorectal cancer and polyps.
Collapse
|