1
|
Vidya Raj CK, Venugopal J, Muthaiah M, Chadha VK, Brammacharry U, Swappna M, Sangeetha AV, Dhandapani SP, Kareedhi VR, Calivarathan L, Karthick M, Jayapal K. In-vitro anti-Mycobacterium tuberculosis effect of Eugenol. Indian J Tuberc 2022; 69:647-654. [PMID: 36460403 DOI: 10.1016/j.ijtb.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND/OBJECTIVES Mycobacterium tuberculosis, the causative agent of tuberculosis has developed resistance to most of the available antimicrobials. Therefore research on the detection of new antimicrobials against Mycobacterium tuberculosis is needed urgently. Essential oils extracted from plants have been shown to have anti-Mycobacterium tuberculosis effect in in-vitro experiments. Essential oil contains many chemicals and any one or more than one chemical may have the anti-Mycobacterium tuberculosis effect. Eugenol is one such chemical in the essential oil and the anti-Mycobacterium tuberculosis effect of eugenol is investigated. METHODS The anti-Mycobacterium tuberculosis effect of eugenol was evaluated against H37Rv and twelve clinical isolates of Mycobacterium tuberculosis in the BD BACTEC MGIT instrument using different volumes of eugenol. RESULTS H37Rv and all the twelve clinical isolates of Mycobacterium tuberculosis were inhibited by eugenol. The minimal inhibitory concentration of H37Rv was 2.5 μl (2.67 mg) and those of the clinical isolates of Mycobacterium tuberculosis ranged from to 2.5 μl (2.67 mg) to 10 μl (10.68 mg). CONCLUSION Eugenol has anti-Mycobacterium tuberculosis effect in the in-vitro BD BACTEC MGIT method.
Collapse
Affiliation(s)
- C K Vidya Raj
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | - Jayapal Venugopal
- Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth University (Grade A), Pillaiyar Kuppam, Puducherry, Tamil Nadu, 607 402, India.
| | - Muthuraj Muthaiah
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | | | - Usharani Brammacharry
- Department of Genetics, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Tharamani, Chennai, 600113, India
| | - M Swappna
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | - A V Sangeetha
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | - Senthil Pragash Dhandapani
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | | | | | | | | |
Collapse
|
2
|
Efflux pump as alternate mechanism for drug resistance in Mycobacterium tuberculosis. Indian J Tuberc 2018; 66:20-25. [PMID: 30797276 DOI: 10.1016/j.ijtb.2018.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 07/26/2018] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains an important global public health issue with an approximate prevalence of 10 million people with TB worldwide in 2015. Since antibiotic treatment is one of the foremost tools for TB control, knowledge of Mycobacterium tuberculosis (MTB) drug resistance is an important component for disease control. Although gene mutations in specific loci of the MTB genomes are reported as the primary basis for drug resistance, additional mechanisms conferring resistance to MTB are thought to exist. Efflux is a ubiquitous mechanism responsible for innate and acquired drug resistance in prokaryotic and eukaryotic cells. MTB presents a large number of putative drug efflux pumps compared to its genome size. Bioinformatics-based evidence has shown an association between drug efflux and innate or acquired resistance in MTB. This review describes the recent understanding of drug efflux in MTB.
Collapse
|
3
|
Rondón L, Urdániz E, Latini C, Payaslian F, Matteo M, Sosa EJ, Do Porto DF, Turjanski AG, Nemirovsky S, Hatfull GF, Poggi S, Piuri M. Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3-5 Days From Sputum Collection. Front Microbiol 2018; 9:1471. [PMID: 30026735 PMCID: PMC6041418 DOI: 10.3389/fmicb.2018.01471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
The World Health Organization (WHO) estimates that 40% of tuberculosis (TB) cases are not diagnosed and treated correctly. Even though there are several diagnostic tests available in the market, rapid, easy, inexpensive detection, and drug susceptibility testing (DST) of Mycobacterium tuberculosis is still of critical importance specially in low and middle-income countries with high incidence of the disease. In this work, we have developed a microscopy-based methodology using the reporter mycobacteriophage mCherrybombϕ for detection of Mycobacterium spp. and phenotypic determination of rifampicin resistance within just days from sputum sample collection. Fluoromycobacteriophage methodology is compatible with regularly used protocols in clinical laboratories for TB diagnosis and paraformaldehyde fixation after infection reduces biohazard risks with sample analysis by fluorescence microscopy. We have also set up conditions for discrimination between M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains by addition of p-nitrobenzoic acid (PNB) during the assay. Using clinical isolates of pre-XDR and XDR-TB strains from this study, we tested mCherrybombΦ for extended DST and we compared the antibiotic resistance profile with those predicted by whole genome sequencing. Our results emphasize the utility of a phenotypic test for M. tuberculosis extended DST. The many attributes of mCherrybombΦ suggests this could be a useful component of clinical microbiological laboratories for TB diagnosis and since only viable cells are detected this could be a useful tool for monitoring patient response to treatment.
Collapse
Affiliation(s)
- Liliana Rondón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Estefanía Urdániz
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Latini
- Instituto de Tisioneumonología Raúl F. Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Florencia Payaslian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mario Matteo
- Instituto de Tisioneumonología Raúl F. Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío F Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrian G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sergio Nemirovsky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Graham F Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susana Poggi
- Instituto de Tisioneumonología Raúl F. Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
4
|
Liu D, Hao K, Wang W, Peng C, Dai Y, Jin R, Xu W, He L, Wang H, Wang H, Zhang L, Wang Q. Rv2629 Overexpression Delays Mycobacterium smegmatis and Mycobacteria tuberculosis Entry into Log-Phase and Increases Pathogenicity of Mycobacterium smegmatis in Mice. Front Microbiol 2017; 8:2231. [PMID: 29187838 PMCID: PMC5694894 DOI: 10.3389/fmicb.2017.02231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of the present study was to explore the potential biological role of Rv2629 in Mycobacterium smegmatis and Mycobacterium tuberculosis.Methods: Recombinant wild type and mutant Rv2629 strains were constructed. Rv2629 expression was evaluated by real-time PCR and western blot. Microarray and interaction network analyses were used to identify the gene interactions associated with wild type and mutant Rv2629. Bacterial growth was assessed in Balb/c mice infected with wild type and mutant Rv2629 strains using CFU assay and histological analysis of the organs. Results: Overexpression of Rv2629 could delay the entry of the Mycobacterium tuberculosis cells into the log-phase, while Rv2629 decreased the number of ribosomes and the expression of uridylate kinase in Mycobacterium smegmatis. The Gene Ontology (GO) and pathway analysis indicated that 122 genes correlated with wild type Rv2629, whereas the Rv2629 mutation led to decrease in the ribosome production, oxidative phosphorylation, and virulence in Mycobacterium tuberculosis. Overexpression of Rv2629 slightly enhanced the drug resistance of Mycobacterium smegmatis to antibiotics, and increased its survival and pathogenicity in Balb/c mice. Conclusion: It is suggested that Rv2629 is involved in the survival of the clinical drug-resistant strain via bacterial growth repression and bacterial persistence induction.
Collapse
Affiliation(s)
- Dan Liu
- Department of Immunology and Pathogen Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Kewei Hao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenjie Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Peng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Dai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruiliang Jin
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxi Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingzhong Wang
- Shanghai Centre for Clinical Laboratory, Shanghai, China
| |
Collapse
|
5
|
Feuerriegel S, Köser CU, Niemann S. Phylogenetic polymorphisms in antibiotic resistance genes of the Mycobacterium tuberculosis complex. J Antimicrob Chemother 2014; 69:1205-10. [PMID: 24458512 DOI: 10.1093/jac/dkt535] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Sequence analysis of known antibiotic resistance genes of the Mycobacterium tuberculosis complex (MTBC) is increasingly being used to infer phenotypic resistance to a variety of antibiotics. However, a clear understanding of the genotype-phenotype relationship is required to interpret genotypic susceptibility results accurately. In this context, it is particularly important to distinguish phylogenetically informative neutral polymorphisms from true resistance-conferring mutations. METHODS Using a collection of 71 strains that encompasses all major MTBC genotypes, we mapped the genetic diversity in 18 genes that are known to be involved or were previously implicated in antibiotic resistance to eight current as well as two novel antibiotics. This included bedaquiline, capreomycin, ethambutol, fluoroquinolones, isoniazid, PA-824, para-aminosalicylic acid, prothionamide, rifampicin and streptomycin. Moreover, we included data from one of our prior studies that focused on two of the three known pyrazinamide resistance genes. RESULTS We found 58 phylogenetic polymorphisms that were markers for the genotypes M. tuberculosis Beijing, Haarlem, Latin American-Mediterranean (LAM), East African Indian (EAI), Delhi/Central Asian (CAS), Ghana, Turkey (Tur), Uganda I and II, Ural and X-type, as well as for Mycobacterium africanum genotypes West African I (WA I) and II (WA II), Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti and Mycobacterium canettii. CONCLUSIONS This study represents one of the most extensive overviews of phylogenetically informative polymorphisms in known resistance genes to date, and will serve as a resource for the design and interpretation of genotypic susceptibility assays.
Collapse
|
6
|
Importance of the genetic diversity within the Mycobacterium tuberculosis complex for the development of novel antibiotics and diagnostic tests of drug resistance. Antimicrob Agents Chemother 2012; 56:6080-7. [PMID: 23006760 DOI: 10.1128/aac.01641-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being genetically monomorphic, the limited genetic diversity within the Mycobacterium tuberculosis complex (MTBC) has practical consequences for molecular methods for drug susceptibility testing and for the use of current antibiotics and those in clinical trials. It renders some representatives of MTBC intrinsically resistant against one or multiple antibiotics and affects the spectrum and consequences of resistance mutations selected for during treatment. Moreover, neutral or silent changes within genes responsible for drug resistance can cause false-positive results with hybridization-based assays, which have been recently introduced to replace slower phenotypic methods. We discuss the consequences of these findings and propose concrete steps to rigorously assess the genetic diversity of MTBC to support ongoing clinical trials.
Collapse
|
7
|
Alonso M, Navarro Y, Barletta F, Martínez Lirola M, Gotuzzo E, Bouza E, García de Viedma D. A novel method for the rapid and prospective identification of Beijing Mycobacterium tuberculosis strains by high-resolution melting analysis. Clin Microbiol Infect 2011; 17:349-57. [PMID: 20384709 DOI: 10.1111/j.1469-0691.2010.03234.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genotypic analysis of Mycobacterium tuberculosis (MTB) has enabled the definition of several lineages. The Beijing family, which is considered highly virulent and transmissible, has been associated with resistance in certain settings and involved in severe outbreaks, making it one of the most closely-monitored lineages. Therefore, rapid prospective identification of Beijing MTB strains could be relevant. In the present study, we evaluate a real-time PCR followed by high-resolution melting (HRM) based on the identification of a single nucleotide polymorphism (SNP) in the Rv2629 gene which defines Beijing lineage (A191C for Beijing genotype and A191A for non-Beijing genotype). This combined methodology efficiently differentiated Beijing and non-Beijing strains in 100% of the isolates from a collection of reference strains without requiring specific DNA probes. Additionally, HRM was able to assign a Beijing/non-Beijing genotype in 90.9% of the respiratory specimens assayed. Its applicability was tested on a Peruvian sample of circulating MTB strains, in which it identified 10.7% as belonging to the Beijing genotype; this proportion reached 20% in the North Lima area. HRM analysis of the A191C SNP is a rapid, reliable, and sensitive method for the efficient prospective survey of high-risk Beijing MTB strains, even in developing settings where MTB culture is often not available.
Collapse
Affiliation(s)
- M Alonso
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorìo Marañón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|