1
|
Schnitzler L, Zarzycki J, Gerhard M, Konde S, Rexer KH, Erb TJ, Maier UG, Koch M, Hofmann MR, Moog D. Lensless digital holographic microscopy as an efficient method to monitor enzymatic plastic degradation. MARINE POLLUTION BULLETIN 2021; 163:111950. [PMID: 33444995 DOI: 10.1016/j.marpolbul.2020.111950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A big challenge of the 21st century is to cope with the huge amounts of plastic waste on Earth. Especially the oceans are heavily polluted with plastics. To counteract this issue, biological (enzymatic) plastic decomposition is increasingly gaining attention. Recently it was shown that polyethylene terephthalate (PET) can be degraded in a saltwater-based environment using bacterial PETase produced by a marine diatom. At moderate temperatures, plastic biodegradation is slow and requires sensitive methods for detection, at least at initial stages. However, conventional methods for verifying the plastic degradation are either complex, expensive, time-consuming or they interfere with the degradation process. Here, we adapt lensless digital holographic microscopy (LDHM) as a new application for efficiently monitoring enzymatic degradation of a PET glycol copolymer (PETG). LDHM is a cost-effective, compact and sensitive optical method. We demonstrate enzymatic PETG degradation over a time course of 43 days employing numerical analysis of LDHM images.
Collapse
Affiliation(s)
- Lena Schnitzler
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Marina Gerhard
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Srumika Konde
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Karl-Heinz Rexer
- Department for Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Uwe G Maier
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany; Laboratory for Cell Biology, Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Martin R Hofmann
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Daniel Moog
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany; Laboratory for Cell Biology, Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|