1
|
Steeg K, Krombach GA, Friebe MH. A Review of Needle Navigation Technologies in Minimally Invasive Cardiovascular Surgeries-Toward a More Effective and Easy-to-Apply Process. Diagnostics (Basel) 2025; 15:197. [PMID: 39857081 PMCID: PMC11763737 DOI: 10.3390/diagnostics15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background: This review evaluates needle navigation technologies in minimally invasive cardiovascular surgery (MICS), identifying their strengths and limitations and the requirements for an ideal needle navigation system that features optimal guidance and easy adoption in clinical practice. Methods: A systematic search of PubMed, Web of Science, and IEEE databases up until June 2024 identified original studies on needle navigation in MICS. Eligible studies were those published within the past decade and that performed MICS requiring needle navigation technologies in adult patients. Animal studies, case reports, clinical trials, or laboratory experiments were excluded to focus on actively deployed techniques in clinical practice. Extracted data included the study year, modalities used, procedures performed, and the reported strengths and limitations, from which the requirements for an optimal needle navigation system were derived. Results: Of 36 eligible articles, 21 used ultrasound (US) for real-time imaging despite depth and needle visibility challenges. Computer tomography (CT)-guided fluoroscopy, cited in 19 articles, enhanced deep structure visualization but involved radiation risks. Magnetic resonance imaging (MRI), though excellent for soft-tissue contrast, was not used due to metallic tool incompatibility. Multimodal techniques, like US-fluoroscopy fusion, improved accuracy but added cost and workflow complexity. No single technology meets all the criteria for an ideal needle navigation system, which should combine real-time imaging, 3D spatial awareness, and tissue integrity feedback while being cost-effective and easily integrated into existing workflows. Conclusions: This review derived the criteria and obstacles an ideal needle navigation system must address before its clinical adoption, along with novel technological approaches that show potential to overcome those challenges. For instance, fusion technologies overlay information from multiple visual approaches within a single interface to overcome individual limitations. Additionally, emerging diagnostic methods like vibroacoustic sensing or optical fiber needles offer information from complementary sensory channels, augmenting visual approaches with insights into tissue integrity and structure, thereby paving the way for enhanced needle navigation systems in MICS.
Collapse
Affiliation(s)
- Katharina Steeg
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Justus-Liebig-University Giessen, Klinikstraße 33, 35392 Giessen, Germany
| | - Gabriele Anja Krombach
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Justus-Liebig-University Giessen, Klinikstraße 33, 35392 Giessen, Germany
| | - Michael Horst Friebe
- Faculty of Computer Science, AGH University Kraków, 30-059 Kraków, Poland;
- INKA Innovation Lab, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
2
|
Pantalone D. Surgery in the Next Space Missions. Life (Basel) 2023; 13:1477. [PMID: 37511852 PMCID: PMC10381631 DOI: 10.3390/life13071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
In the coming years, missions to the Moon and Mars shall be the new goals of space flight. The complexity of these missions due to the great distance from Earth and the unforeseen obstacles to settle on another planet have given rise to great concerns for crew health and survival. The need for advanced crew autonomy and a different approach to surgical emergency require new protocols and devices to help future crew medical officers and other crew members in a task of unprecedented difficulty. Hence, the increasing variety of schedules, devices, and protocols being developed. A serious health problem, such as an emerging surgical disease or severe trauma, can jeopardize the mission and survival of the entire crew. Many other difficulties are present in deep-space missions or settlements on other planets, such as communication and supply, also medical, delays, and shortage, and the presence of radiation. Progress in advanced technologies as well as the evolution of robotic surgery and the use of artificial intelligence are other topics of this review. In this particular area of research, even if we are still very far from an "intelligent robot", this evolution must be evaluated in the light of legislative and ethical considerations. This topic was presented at the annual meeting of the American College of Surgeons-Italy Chapter in 2021.
Collapse
Affiliation(s)
- Desiree Pantalone
- American College of Surgeons, FACS, Chicago, IL 60611, USA
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Emergency Surgery Unit-Trauma Team, Trauma Center, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
3
|
Sühn T, Esmaeili N, Mattepu SY, Spiller M, Boese A, Urrutia R, Poblete V, Hansen C, Lohmann CH, Illanes A, Friebe M. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3141. [PMID: 36991854 PMCID: PMC10056323 DOI: 10.3390/s23063141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The direct tactile assessment of surface textures during palpation is an essential component of open surgery that is impeded in minimally invasive and robot-assisted surgery. When indirectly palpating with a surgical instrument, the structural vibrations from this interaction contain tactile information that can be extracted and analysed. This study investigates the influence of the parameters contact angle α and velocity v→ on the vibro-acoustic signals from this indirect palpation. A 7-DOF robotic arm, a standard surgical instrument, and a vibration measurement system were used to palpate three different materials with varying α and v→. The signals were processed based on continuous wavelet transformation. They showed material-specific signatures in the time-frequency domain that retained their general characteristic for varying α and v→. Energy-related and statistical features were extracted, and supervised classification was performed, where the testing data comprised only signals acquired with different palpation parameters than for training data. The classifiers support vector machine and k-nearest neighbours provided 99.67% and 96.00% accuracy for the differentiation of the materials. The results indicate the robustness of the features against variations in the palpation parameters. This is a prerequisite for an application in minimally invasive surgery but needs to be confirmed in realistic experiments with biological tissues.
Collapse
Affiliation(s)
- Thomas Sühn
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- SURAG Medical GmbH, 39118 Magdeburg, Germany
| | | | - Sandeep Y. Mattepu
- INKA Innovation Laboratory for Image Guided Therapy, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | - Axel Boese
- INKA Innovation Laboratory for Image Guided Therapy, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Robin Urrutia
- Instituto de Acústica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia 5111187, Chile
| | - Victor Poblete
- Instituto de Acústica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia 5111187, Chile
| | - Christian Hansen
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Christoph H. Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | - Michael Friebe
- INKA Innovation Laboratory for Image Guided Therapy, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Department of Measurement and Electronics, AGH University of Science and Technology, 30-059 Kraków, Poland
- CIB—Center of Innovation and Business Development, FOM University of Applied Sciences, 45127 Essen, Germany
| |
Collapse
|
4
|
Gumbs AA, Frigerio I, Spolverato G, Croner R, Illanes A, Chouillard E, Elyan E. Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery? SENSORS (BASEL, SWITZERLAND) 2021; 21:5526. [PMID: 34450976 PMCID: PMC8400539 DOI: 10.3390/s21165526] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022]
Abstract
Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner.
Collapse
Affiliation(s)
- Andrew A. Gumbs
- Centre Hospitalier Intercommunal de POISSY/SAINT-GERMAIN-EN-LAYE 10, Rue Champ de Gaillard, 78300 Poissy, France;
| | - Isabella Frigerio
- Department of Hepato-Pancreato-Biliary Surgery, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
| | - Gaya Spolverato
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35122 Padova, Italy;
| | - Roland Croner
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Alfredo Illanes
- INKA–Innovation Laboratory for Image Guided Therapy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Elie Chouillard
- Centre Hospitalier Intercommunal de POISSY/SAINT-GERMAIN-EN-LAYE 10, Rue Champ de Gaillard, 78300 Poissy, France;
| | - Eyad Elyan
- School of Computing, Robert Gordon University, Aberdeen AB10 7JG, UK;
| |
Collapse
|