1
|
Sakava P, Nyemb JN, Matchawe C, Kumcho MP, Tagatsing MF, Nsawir BJ, Talla E, Atchadé ADT, Laurent S, Henoumont C. Chemical constituents and antibacterial activities of Cameroonian dark brown propolis against potential biofilm-forming bacteria. Nat Prod Res 2024:1-14. [PMID: 39726405 DOI: 10.1080/14786419.2024.2437024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Propolis is a resinous material collected by different bee species from various plant exudates and used to seal holes in honeycombs, smoothen the internal walls, embalm intruders, improve health and prevent diseases. From its n-hexane extract, eight compounds were isolated and characterised as: mangiferonic acid (1); 1-hydroxymangiferonic acid (2), new natural product; mangiferolic acid(3); 27-hydroxymangiferolic acid (4), reported here for the first time as propolis constituent; 27-hydroxymangiferonic acid (5); α-amyrin (6); β-amyrin (7) and lupeol (8). The chemical structures of the isolated compounds were elucidated using spectroscopic methods, such as 1D and 2D-NMR, mass spectrometry and comparison with previous published reports. Compounds 6-8 and n-hexane extract were tested against Gram-negative and Gram-positive bacteria strains using agar disc diffusion and macrodilution techniques. Interestingly, n-hexane extract and compounds 6-8 had good inhibitory activities against Methicillin Resistant Staphylococcus aureus (MRSA) and the clinical Klebsiella pneumoniae isolates. The biological effects of n-hexane extract and its fraction against K. pneumoniae 12 CM and MRSA revealed in the present study suggest that the Cameroonian dark brown propolis could be a potential alternative management of biofilms on medical devices and respiratory skin or infections.
Collapse
Affiliation(s)
- Paul Sakava
- Department of Chemistry, Higher Teacher Training College, The University of Bamenda, Bambili, Cameroon
- Natural Substances and Valorization Laboratory, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Noël Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, University of Maroua, Kaélé, Cameroon
| | - Chelea Matchawe
- Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of the Scientific Research and innovation, Yaounde, Cameroon
- The University Institute of International Development, Mokolo, Far North, Cameroon
| | | | - Maurice Fotsing Tagatsing
- Natural Substances and Valorization Laboratory, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Bonglaisin J Nsawir
- Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of the Scientific Research and innovation, Yaounde, Cameroon
| | - Emmanuel Talla
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Department of chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Alex De Théodore Atchadé
- Natural Substances and Valorization Laboratory, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium
| | - Celine Henoumont
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium
| |
Collapse
|
2
|
Tchuente Djoko C, Tamfu AN, Nyemb JN, Toko Feunaing R, Laurent S, Henoumont C, Talla E, Venditti A. In vitro α-glucosidase inhibitory activity of isolated compounds and semisynthetic derivative from aerial parts of Erythrina senegalensis DC. Nat Prod Res 2023; 37:3994-4003. [PMID: 36647748 DOI: 10.1080/14786419.2023.2167205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
The current study was conducted to isolate the phytoconstituents from Erythrina senegalensis leaves and stem bark and evaluate their inhibitory activity against α-glucosidase, digestive enzyme related to diabetes mellitus. Phytochemical investigation of the leaves resulted in the isolation of three saponins (3-5), two triterpenoids (7 and 8) and two steroids (10a and 10b) as inseparable mixture, while one saponin (6), one triterpenoid (9) and one mixture of two cinnamates (2a and 2b) were isolated from the stem bark. Except for compounds 2 b, 7, 8, 10a and 10 b all the isolated compounds are reported here for the first time from the genus Erythrina. Acetylation of the mixture of two cinnamates (2a and 2b) led to a new diester derivative (1) trivially called erythrinamate. The extracts and pure compounds (3, 4, 6) showed good α-glucosidase inhibitory activity compared to the standard drug acarbose. The findings suggest that saponins of E. senegalensis could be used to develop potential anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Cyrille Tchuente Djoko
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | - Jean Noël Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, The University of Maroua, Kaele, Cameroon
| | - Romeo Toko Feunaing
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Céline Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | | |
Collapse
|
3
|
Afata TN, Dekebo A. Chemical Composition and Antimicrobial Effect of Western Ethiopian Propolis. Chem Biodivers 2023; 20:e202200922. [PMID: 36575948 DOI: 10.1002/cbdv.202200922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Propolis or bee glue is commonly named as a natural resinous mixture produced by honeybees (Apis mellifera) from substances collected from parts of plants, buds, and exudate. The result of the ethyl acetate - methanol (3 : 2) volume by volume fraction yielded a total of two compounds namely betulinic acid and β-amyrin isolated from Bodji Dirmaji and Fincha'a district propolis, respectively. The crude ethanolic extract was portioned with the different solvent systems by increasing the polarities in the following order of hexane, ethyl acetate, and methanol. Column chromatographic method on normal silica gel was used to isolate the compounds. The structures of the compounds were characterized using 1D NMR techniques. The study revealed that western Ethiopian propolis was rich in saponins, tannins, flavonoids, steroids, triterpenes, and glycosides. The antibacterial activity for the isolated compound (betulinic acid) showed the highest inhibition for S. aureus (11.2±1.6), E. coli (17.7±1.1), and A. niger (12.6±1.2) mm.
Collapse
Affiliation(s)
- Tariku Neme Afata
- Department of Environmental Health Science and Technology, Jimma University, Ethiopia.,Oromia Region, Dambi Dollo Teachers College, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia.,Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
4
|
Tamfu AN, Ceylan O, Cârâc G, Talla E, Dinica RM. Antibiofilm and Anti-Quorum Sensing Potential of Cycloartane-Type Triterpene Acids from Cameroonian Grassland Propolis: Phenolic Profile and Antioxidant Activity of Crude Extract. Molecules 2022; 27:4872. [PMID: 35956824 PMCID: PMC9369644 DOI: 10.3390/molecules27154872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Propolis is very popular for its beneficial health properties, such as antimicrobial activity and antioxidant effects. It is one of the most long-serving traditional medicines to mankind due to its interesting chemical diversity and therapeutic properties. The detailed chemical information of propolis samples is very necessary to guarantee its safety and for it to be accepted into health care systems. The phenolic profile of the hydroethanolic extract was determined using HPLC-DAD, and the antioxidant was evaluated using five complementary methods. Triterpenoids were isolated using column chromatography and characterized using 1H NMR and 13C NMR. The effects of the extract and the isolated compounds on quorum sensing mediated processes and biofilm formation in bacteria were evaluated. Protocatechic acid (40.76 ± 0.82 µg/g), 4-hydroxybenzoic acid (24.04 ± 0.21 µg/g), vanillic acid (29.90 ± 1.05 µg/g), quercetin (43.53 ± 1.10 µg/g), and luteolin (4.44 ± 0.48 µg/g) were identified and quantified. The extract showed good antioxidant activity in the DPPH•, ABTS•+, CUPRAC, and metal chelating assays, and this antioxidant effect was confirmed by cyclic voltammetry. 27-Hydroxymangiferonic acid (1), Ambolic acid (2), and Mangiferonic acid (3) were isolated from anti-quorum sensing activity at MIC, and it was indicated that the most active sample was the extract with inhibition diameter zone of 18.0 ± 1.0 mm, while compounds 1, 2, and 3 had inhibition zones of 12.0 ± 0.5 mm, 9.0 ± 1.0 mm, and 12.3 ± 1.0 mm, respectively. The samples inhibited the P. aeruginosa PA01 swarming motility at the three tested concentrations (50, 75, and 100 μg/mL) in a dose-dependent manner. The propolis extract was able to inhibit biofilm formation by S. aureus, E. coli, P. aeruginosa, C. albicans, and C. tropicalis at MIC concentration. Compound 1 proved biofilm inhibition on S. aureus, L. monocytogenes, E. faecalis, E. coli, and C. tropicalis at MIC and MIC/2; compound 2 inhibited the formation of biofilm at MIC on S. aureus, E. faecalis, E. coli, S. typhi, C. albicans, and C. tropicalis; and compound 3 inhibited biofilm formation on E. faecalis, E. coli, C. albicans, and C. tropicalis and further biofilm inhibition on E. coli at MIC/4 and MIC/8. The studied propolis sample showed important amounts of cycloartane-type triterpene acids, and this indicates that there can be significant intra-regional variation probably due to specific flora within the vicinity. The results indicate that propolis and its compounds can reduce virulence factors of pathogenic bacteria.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Geta Cârâc
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| | - Emmanuel Talla
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
| | - Rodica Mihaela Dinica
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| |
Collapse
|
5
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
6
|
The Oral Wound Healing Potential of Thai Propolis Based on Its Antioxidant Activity and Stimulation of Oral Fibroblast Migration and Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3503164. [PMID: 35664934 PMCID: PMC9162842 DOI: 10.1155/2022/3503164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Introduction. Propolis has demonstrated wound healing effects. Propolis’ effects vary based on its composition and geographical origin. However, there are few reports on the effects of propolis on oral wound healing. The aim of this study was to evaluate the antioxidant and in vitro gingival wound healing effects of the n-hexane extract of propolis (HEP), ethyl acetate extract of propolis (EEP), and aqueous extract of propolis (AEP) fractions of the ethanol extract of Thai propolis. Materials and Methods. The crude ethanol extract of propolis was obtained by maceration with 95% ethanol that was sequentially fractionated with hexane, ethyl acetate, and distilled water. The chemical profiles of the samples were assessed by thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). Antioxidant activity was determined using DPPH and FRAP assays. The effects of the propolis fractions on human gingival fibroblast (HGF) proliferation, migration, and in vitro wound healing were determined by MTT, modified Boyden chamber, and scratch assay, respectively. Results. We found that solvent polarity greatly affected the extract yield and TLC profiles. The highest extract yield was found in HEP (38.88%), followed by EEP (19.8%) and AEP (1.42%). TLC revealed 7 spots in the crude ethanol extract (Rf 0.36–0.80), 6 spots in HEP (Rf 0.42–0.80) and EEP (Rf 0.36–0.72), and 4 spots in AEP (Rf 0.17–0.79). GC-MS analysis revealed a high amount of triterpenoids in HEP (82.97%) compared with EEP (28.96%). However, no triterpenoid was found in AEP. The highest antioxidant activity and stimulation of HGF proliferation were observed in HEP, followed by EEP and AEP. HEP and EEP, but not AEP, enhanced HGF migration. However, all propolis fractions induced wound closure. Conclusions. HEP contained a large amount of triterpenoids. Antioxidant and in vitro wound closure effects were found in HEP, EEP, and AEP fractions.
Collapse
|
7
|
Wieczorek PP, Hudz N, Yezerska O, Horčinová-Sedláčková V, Shanaida M, Korytniuk O, Jasicka-Misiak I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022; 27:1600. [PMID: 35268700 PMCID: PMC8911684 DOI: 10.3390/molecules27051600] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
This review aims to analyze propolis as a potential raw material for the development and manufacture of new health-promoting products. Many scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases via searching the word "propolis". The different extraction procedures, key biologically active compounds, biological properties, and therapeutic potential of propolis were analyzed. It was concluded that propolis possesses a variety of biological properties because of a very complex chemical composition that mainly depends on the plant species visited by bees and species of bees. Numerous studies found versatile pharmacological activities of propolis: antimicrobial, antifungal, antiviral, antioxidant, anticancer, anti-inflammatory, immunomodulatory, etc. In this review, the composition and biological activities of propolis are presented from a point of view of the origin and standardization of propolis for the purpose of the development of new pharmaceutical products on its base. It was revealed that some types of propolis, especially European propolis, contain flavonoids and phenolic acids, which could be markers for the standardization and quality evaluation of propolis and its preparations. One more focus of this paper was the overview of microorganisms' sensitivity to propolis for further development of antimicrobial and antioxidant products for the treatment of various infectious diseases with an emphasis on the illnesses of the oral cavity. It was established that the antimicrobial activity of different types of propolis is quite significant, especially to Gram-negative bacteria and lipophilic viruses. The present study could be also of interest to the pharmaceutical industry as a review for the appropriate design of standardized propolis preparations such as mouthwashes, toothpastes, oral drops, sprays, creams, ointments, suppositories, tablets, and capsules, etc. Moreover, propolis could be regarded as a source for the isolation of biologically active substances. Furthermore, this review can facilitate partially overcoming the problem of the standardization of propolis preparations, which is a principal obstacle to the broader use of propolis in the pharmaceutical industry. Finally, this study could be of interest in the area of the food industry for the development of nutritionally well-balanced products. The results of this review indicate that propolis deserves to be better studied for its promising therapeutic effects from the point of view of the connection of its chemical composition with the locality of its collection, vegetation, appropriate extraction methods, and standardization.
Collapse
Affiliation(s)
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Oksana Yezerska
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
| | | | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksii Korytniuk
- Department of Occupational and Facial Surgery and Dentistry, Ukrainian Military Medical Academy, 01015 Kyiv, Ukraine;
| | - Iza Jasicka-Misiak
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
8
|
Belmehdi O, Bouyahya A, Jekő J, Cziáky Z, Zengin G, Sotkó G, El baaboua A, Skali Senhaji N, Abrini J. Chemical analysis, antibacterial, and antioxidant activities of flavonoid‐rich extracts from four Moroccan propolis. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team Department of Biology Faculty of Sciences Abdelmalek Essaadi University Tetouan Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology Department of Biology Faculty of Sciences, and Genomic Center of Human Pathologies Faculty of Medicine and Pharmacy Mohammed V University of Rabat Rabat Morocco
| | - József Jekő
- Agricultural and Molecular Research and Service Institute University of Nyíregyháza Nyíregyháza Hungary
| | - Zoltán Cziáky
- Physiology and Biochemistry Research Laboratory Department of Biology Science Faculty Selcuk University Konya Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory Department of Biology Science Faculty Selcuk University Konya Turkey
| | | | - Aicha El baaboua
- Biotechnology and Applied Microbiology Team Department of Biology Faculty of Sciences Abdelmalek Essaadi University Tetouan Morocco
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team Department of Biology Faculty of Sciences Abdelmalek Essaadi University Tetouan Morocco
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team Department of Biology Faculty of Sciences Abdelmalek Essaadi University Tetouan Morocco
| |
Collapse
|
9
|
Ebiloma GU, Ichoron N, Siheri W, Watson DG, Igoli JO, De Koning HP. The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules 2020; 25:E5155. [PMID: 33167520 PMCID: PMC7663965 DOI: 10.3390/molecules25215155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.
Collapse
Affiliation(s)
- Godwin U. Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Nahandoo Ichoron
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
| | - Weam Siheri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - John O. Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|