1
|
Malik MS, Rehman A, Shah IH, Arif S, Nan K, Yan Y, Song S, Hameed MK, Azam M, Zhang Y. Green synthesized silicon dioxide nanoparticles (SiO 2NPs) ameliorated the cadmium toxicity in melon by regulating antioxidant enzymes activity and stress-related genes expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125459. [PMID: 39644955 DOI: 10.1016/j.envpol.2024.125459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Green synthesized nanoparticles (NPs) are an eco-friendly and cost-effective approach to reduce heavy metal stress in plants. Among heavy metals, cadmium (Cd) possesses higher toxicity to the crops and ultimately reduces their growth and yield. The current study aims to evaluate the effectiveness of green synthesized SiO2NPs to reduce toxic effects of Cd in melon (Cucumis melo) by regulating physiological parameters, enhancing antioxidant enzyme activity, and modulating stress-related gene expression. The SiO2NPs were synthesized using Artemisia annua plant extract having spherical shape and size within the range of 40-70 nm and characterized using advanced spectroscopic and analytical techniques. The application of SiO2NPs (75 mg/L) significantly improved physiological parameters such as shoot length (SL), root length (RL), leaf fresh weight (LFW), root fresh weight (RFW), leaf dry weight (LDW) and root dry weight (RDW) by 14%, 20%, 15%, 16%, 14%, and 28%, respectively, compared to Cd-stressed plants. Photosynthetic pigments (chlorophyll and carotenoids) showed a notable increase of 15% and 40%, respectively. Furthermore, the activities of antioxidant enzymes such as SOD, POD, CAT, and APX were enhanced by 28.67%, 35.45%, 32.07%, and 42.75%, respectively. In addition, applying SiO2NPs increased the concentration of macronutrients N, P, and K by 33%, 40%, and 37%, respectively, compared to Cd-stressed plants. Moreover, SiO2NPs upregulated the expression of several stress-related genes and reduced Cd accumulation in shoots and roots. This study reveals that green synthesized SiO2NPs effectively reduced the Cd toxicity in melon by improving morphological and physiological parameters, enhancing antioxidant enzyme activity, and regulating the expression of stress-related genes. These findings suggest that green synthesized SiO2NPs could play a crucial role in sustainable agriculture by protecting crops from heavy metal stress.
Collapse
Affiliation(s)
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Nan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Zaghdoud C, Yahia Y, Nagaz K, Martinez-Ballesta MDC. Foliar spraying of zinc oxide nanoparticles improves water transport and nitrogen metabolism in tomato (Solanum lycopersicum L.) seedlings mitigating the negative impacts of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37428-37443. [PMID: 38777976 DOI: 10.1007/s11356-024-33738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv. Chibli F1) plants grown on a Cd-supplied (CdCl2; 0, 10, 40 μM) Hoagland nutrient solution. The results depicted that the individually studied factors (ZnO-NPs and Cd) had a significant impact on all the physiological parameters analyzed. Independently to the Cd concentration, ZnO-NPs-sprayed plants showed significantly higher dry weight (DW) in both leaves and roots compared to the non-sprayed ones, which was in consonance with higher and lower levels of Zn2+ and Cd2+ ions, respectively, in these organs. Interestingly, ZnO-NPs spraying improved water status in all Cd-treated plants as evidenced by the increase in root hydraulic conductance (L0), apoplastic water pathway percentage, and leaf and root relative water content (RWC), compared to the non-sprayed plants. This improved water balance was associated with a significant accumulation of osmoprotectant osmolytes, such as proline and soluble sugars in the plant organs, reducing electrolyte leakage (EL), and osmotic potential (ψπ). Also, ZnO-NPs spraying significantly improved NO3- and NH4+ assimilation in the leaf and root tissues of all Cd-treated plants, leading to a reduction in NH4+ toxicity. Our findings point out new insights into how ZnO-NPs affect water transport and nitrogen metabolism in Cd-stressed plants and support their use to improve crop resilience against Cd-contaminated soils.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia.
- Technology Transfer Office (TTO), University of Gafsa, 2112, Gafsa, Tunisia.
| | - Yassine Yahia
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Kamel Nagaz
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Maria Del Carmen Martinez-Ballesta
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203, Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202, Cartagena, Spain
| |
Collapse
|
3
|
Cheng Y, Qiu L, Shen P, Wang Y, Li J, Dai Z, Qi M, Zhou Y, Zou Z. Transcriptome studies on cadmium tolerance and biochar mitigating cadmium stress in muskmelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107661. [PMID: 36989990 DOI: 10.1016/j.plaphy.2023.107661] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Cadmium pollution in agricultural soil is a great threat to crop growth and human health. In this research, with 1%, 3% and 5% biochar applied to control soil cadmium pollution, melon was selected to be the experimental object for physiological detection and transcriptome analysis, through which we explored the mechanism of cadmium tolerance and biochar mitigating cadmium stress in muskmelon. Three set concentrations of biochar have a mitigative effect on muskmelon cadmium stress, and 5% biochar and 3% biochar respectively have the best and the worst alleviative effect. The alleviation of biochar to cadmium stress on muskmelon is primarily in the manner of inhibiting cadmium transfer, while the resistance of muskmelon to cadmium stress is through activating phenylpropanoid pathway and overexpressing stress related genes. Under cadmium treatment, 11 genes of the phenylpropane pathway and 19 stress-related genes including cytochrome P450 family protein genes and WRKY transcription factor genes were up-regulated, while 1%, 3%, 5% biochar addition significantly downregulated 3, 0, 7 phenylpropane pathway genes and 17, 5, 16 stress-related genes, respectively. Genes such as cytochrome P450 protein family genes, WRKY transcription factor genes, and annexin genes may play a key role in muskmelon's resistance to cadmium stress. The results show the key pathways and genes of cadmium stress resistance and the effect of different concentrations of biochar in alleviating cadmium stress, which provide a reference for the research of cadmium stress resistance in crops and the application of biochar in cadmium pollution in agricultural soil.
Collapse
Affiliation(s)
- Yuxuan Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lingzhi Qiu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pingkai Shen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China
| | - Meifang Qi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
4
|
Sulejmanović J, Memić M, Šehović E, Omanović R, Begić S, Pazalja M, Ajanović A, Azhar O, Sher F. Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water. CHEMOSPHERE 2022; 296:133971. [PMID: 35182527 DOI: 10.1016/j.chemosphere.2022.133971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The wastewater containing Cd, Co, Fe, Cu, Cr, Mn, Ni and Pb ions are as trace metal pollutants. Water pollution caused by increment in industrialization and overpopulation reveals a major threat to human health. Adsorption is recognized as the effective and optimum method to remove water contaminations. The amorphous and porous form of silicon dioxide is silica gel widely used as an adsorbent. It can absorb moisture with traces of the target heavy metal ions. This research elaborates a simplistic, and reliable preconcentration column method highly developed for the determination of Cd2+, Fe3+, Co2+, Cr3+, Cu2+, Mn2+, Pb2+ and Ni2+ ions in model solutions and real water samples by flame atomic absorption spectrometry (FAAS). The proposed operation depends on the retention of the target ions from buffered model solutions on a silica gel filled up a column modified with vanadium(V) oxide sorbent followed by their desorption. SiO2/V2O5 is an efficient adsorbent due to its low cost, eco-friendly and high availability. The adsorbent morphological and interfacial physicochemical characterization was done using scanning electron microscopy, and Fourier transmission infrared spectroscopy, respectively. The 2.92 value achieved for the point of zero charges supports the experimentation for the heavy metal efficient adsorption. Quantitative recoveries were achieved at pH 10 with 50 mg of SiO2/V2O5 mass and adsorption capacity ranged from 28.96 μmol/g (Pb) to 214.86 μmol/g (Fe) with 1114.79 μmol/g in total. Simultaneous preconcentration effect was determined by the interference cations on the sorbent. The LOD varies from 8.42 to 50.56 μg/L and LOQ is achieved from 20.06 to 72.41 μg/L of 15 blank solutions. The developed preconcentration procedure was adequately implemented for the simultaneous analysis of eight metallic ions content in local river samples. The developed vanadium(V) oxide incorporated with silica gel is practicable as an economical and effective adsorbent to eliminate metallic ions from a liquid solution.
Collapse
Affiliation(s)
- Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina.
| | - Mustafa Memić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Rasim Omanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Sabina Begić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Mirha Pazalja
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Atifa Ajanović
- Faculty of Veterinary Medicine, University of Sarajevo, Zmaja od Bosne 90, 71000, Sarajevo, Bosnia and Herzegovina
| | - Ofaira Azhar
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan; International Society of Engineering Science and Technology, United Kingdom
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
5
|
Zhang J, Xiao Q, Wang P. Phosphate-solubilizing bacterium Burkholderia sp. strain N3 facilitates the regulation of gene expression and improves tomato seedling growth under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112268. [PMID: 33930768 DOI: 10.1016/j.ecoenv.2021.112268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is among the most toxic heavy metals in soils. The ways by which tomato plants inoculated with a phosphate-solubilizing bacterium (PSB) respond to Cd and regulate gene expression remain unclear. We investigated hormone metabolism and genes involved in Cd resistance in tomato seedlings inoculated with the PSB strain N3. Cd inhibited tomato plant growth and nutrient uptake and increase in dry weight. Compared with Cd treatment, N3 inoculation inhibited the accumulation of Cd in the shoots and roots, and the root dry weight significantly increased by 30.50% (P < 0.05). The nitrogen and potassium contents in the roots of seedlings treated with N3 increased, and the phosphorus levels were the same as those in the control. N3 decreased the rate of Zn2+ absorption but increased Fe3+ absorption in the roots, and the amount of accumulated Cd increased with Zn2+ uptake. The concentrations of hormones (indole-3-acetic acid, IAA; zeatin, ZEA; and jasmonic acid, JA) increased under Cd stress, whereas inoculation with N3 reduced IAA and ZEA levels. In the comparison between N3 + Cd and Cd treatments, the highest number of up- and downregulated genes was obtained. Pathways involved in signaling response, photosynthesis, phenylpropanoid biosynthesis, and DNA replication and the photosynthesis-antenna proteins pathway play important roles in the responses and adaptation of seedlings to Cd. Inoculation with N3 alleviates Cd stress in tomato seedlings. The present study provides new insights into the differentially expressed genes related to interaction between PSB and tomato exposed to Cd in soils.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, China.
| | - Qingqing Xiao
- School of Biology, Food and Environment, Hefei University, 230601 Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, China
| |
Collapse
|
6
|
Pathom-Aree W, Matako A, Rangseekaew P, Seesuriyachan P, Srinuanpan S. Performance of Actinobacteria isolated from rhizosphere soils on plant growth promotion under cadmium toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1497-1505. [PMID: 33913782 DOI: 10.1080/15226514.2021.1913992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aimed to evaluate the potential use of plant growth-promoting actinobacteria (PGPA) for enhanced cadmium (Cd) phytoremediation and plant growth. Forty-two actinobacteria were isolated from rhizosphere soils in Thailand. Among isolates tested, only Streptomyces phaeogriseichromatogenes isolate COS4, showed the high ability to produce siderophores as a plant growth stimulant and had a strong Cd tolerance potential. The significance of siderophores production and Cd tolerance ability under different Cd concentrations suggests the potential of isolate COS4 to work effectively. Plant culture revealed that the significant increase in root length, root to tip length, and total dried weight of sunflower were obtained after 2 h incubation of sunflower seeds with isolate COS4. The efficiency of Cd uptake was found to range between 42.3 and 61.3%. Translocation factor results confirmed that plant growth promoting S. phaeogriseichromatogenes isolate COS4-assisted phytoremediation can be considered as Cd absorbents for the restoration of polluted sites due to high translocation values.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Science, Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Alisa Matako
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Ameliorative Effects of Exogenous Proline on Photosynthetic Attributes, Nutrients Uptake, and Oxidative Stresses under Cadmium in Pigeon Pea ( Cajanus cajan L.). PLANTS 2021; 10:plants10040796. [PMID: 33921552 PMCID: PMC8073620 DOI: 10.3390/plants10040796] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Proline plays a significant role in the plant response to stress conditions. However, its role in alleviating metal-induced stresses remains elusive. We conducted an experiment to evaluate the ameliorative role of exogenous proline on cadmium-induced inhibitory effects in pigeon pea subjected to different Cd treatments (4 and 8 mg/mL). Cadmium treatments reduced photosynthetic attributes, decreased chlorophyll contents, disturbed nutrient uptake, and affected growth traits. The elevated activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), in association with relatively high contents of hydrogen peroxide, thiobarbituric acid reactive substances, electrolyte leakage, and endogenous proline, was measured. Exogenous proline application (3 and 6 mM) alleviated cadmium-induced oxidative damage. Exogenous proline increased antioxidant enzyme activities and improved photosynthetic attributes, nutrient uptake (Mg2+, Ca2+, K+), and growth parameters in cadmium-stressed pigeon pea plants. Our results reveal that proline supplementation can comprehensively alleviate the harmful effects of cadmium on pigeon pea plants.
Collapse
|